Rabu, 24 Juni 2009

Mineralogi

Mineralogi



Bab akan menjelaskan gambaran umum mengenai mineralogi,

kimia mineral, sifat-sifat fisik mineral, dan sistematika mineral.

Mineral adalah zat atau benda yang biasanya padat dan homogen dan hasil

bentukan alam yang memiliki sifat-sifat fisik dan kimia tertentu serta umumnya

berbentuk kristalin. Meskipun demikian ada beberapa bahan yang terjadi

karena penguraian atau perubahan sisa-sisa tumbuhan dan hewan secara

alamiah juga digolongkan ke dalam mineral, seperti batubara, minyak bumi,

tanah diatome.



3.1 Kimia mineral

Kimia mineral merupakan suatu ilmu yang dimunculkan pada awal abad ke-

19,setelah dikemukakannya "hukum komposisi tetap" oleh Proust pada tahun

1799, teori atom Dalton pada tahun 1805, dan pengembangan metode analisis

kimia kuantitatif yang akurat. Karena ilmu kimia mineral didasarkan pada

pengetahuan tentang komposisi mineral, kemungkinan dan keterbatasan

analisis kimia mineral harus diketaui dengan baik. Analisis kimia kuantitatif

bertujuan untuk mengidentifikasi unsur-unsur yang menyusun suatu

substansi dan menentukan jumlah relatif masing-masing unsur tersebut.

Analisis harus lengkap .seluruh unsur-unsur yang ada pada mineral harus

ditentukan. dan harus tepat.



Komposisi kimia sebagian besar mineral yang diketahui, menunjukkan suatu

kisaran tertentu mengenai penyusun dasarnya. Dalam analisis kimia, jumlah

kandungan unsur dalam suatu senyawa dinyatakan dengan persen berat

dan dalam analisis yang lengkap jumlah total persentase penyusunnya harus

100. Namun dalam prakteknya, akibat keterbatasan ketepatan, jumlah 100

merupakan suatu kebetulan; umumnya kisaran 99,5 sampai 100,5 sudah dianggap

sebagai analisis yang baik.



Prinsip-prinsip kimia yang berhubungan dengan kimia mineral

1. Hukum komposisi tetap

(The Law of Constant Composition) oleh Proust (1799):

"Perbandingan massa unsur-unsur dalam tiap senyawa adalah tetap"


2. Teori atom Dalton (1805)

1. Setiap unsur tersusun oleh partikel yang sangat kecil dan berbentuk

seperti bola yang disebut atom.

a) Atom dari unsur yang sama bersifat sama sedangkan dari unsur

yang berbeda bersifat berbeda pula.

b) Atom dapat berikatan secara kimiawi menjadi molekul.


Teknik analisis mineral secara kimia

Analisis kimia mineral (dan batuan) diperoleh dari beberapa macam teknik

analisis. Sebelum tahun 1947 analisis kuantitatif mineral diperoleh dengan

teknik analisis "basah", yang mana mineral dilarutkan dalam larutan tertentu.

Penentuan unsur-unsur dalam larutan biasanya dipakai satu atau lebih teknikteknik

berikut: (1) ukur warna (colorimetry), (2) analisis volumetri (titrimetri)

dan (3) analisis gravimetri.



Sejak tahun 1960 sebagian besar analisis telah dilakukan dengan teknik instrumental

seperti spektroskop serapan atom, analisis flouresen sinar X, analisis

electron microprobe, dan spektroskop emisi optis. Masing-masing teknik

ini memiliki preparasi sampel yang khusus dan memiliki keterbatasan deteksi

dan kisaran kesalahan sedang - baik. Hasil analisis biasanya ditampilkan

dalam bentuk tabel persen berat dari unsur-unsur atau oksida dalam mineral

yang dianalisis. Teknik analisis basah memberikan determinasi secara kuantitatif

variasi kondisi oksidasi suatu kation (seperti Fe2+ dengan Fe3+) dan juga

untuk determinasi kandungan H2O dari mineral-mineral hidrous. Metode

instrumen umumnya tidak dapat memberikan informasi seperti kondisi oksidasi

atau kehadiran H2O.



Dalam analisis kimia mineral dapat dibedakan menjadi dua macam, yaitu

analisis kimia kualitatif dan analisis kimia kuantitatif. Analisis kualitatif

menyangkut deteksi dan identifikasi seluruh komposisi dari suatu senyawa.

Analisis kuantitatif meliputi penentuan persen berat (atau parts per million

[ppm]) unsur-unsur dalam suatu senyawa. Dengan demikian kedua analisis

ini akan menjawab pertanyaan "Apa yang dikandung dan berapa besar jumlahnya?".

Analisis kualitatif awal umumnya sangat membantu dalam memutuskan

metode apa yang akan dipakai untuk analisis kuantitatif.



Analisis kimia basah

Cara ini biasanya dilakukan di laboratorium kimia. Setelah sampel digerus

menjadi bubuk, langkah pertama yang dilakukan adalah menguraikan sampel.

Biasanya pada tahap ini digunakan satu dari beberapa larutan asam,

seperti asam klorida (HCl), asam sulfat (H2SO4), atau asam florida (HF), atau

campuran dari larutan asam tersebut. Jika sampel sudah dalam bentuk larutan,

langkah selanjutnya adalah colorimetry, volumetri atau gravimetri untuk

menentukan unsur-unsur yang diinginkan.

Kisaran konsentrasi unsur-unsur berdasarkan teknik analisis ini adalah:

Metode Konsentrai unsur dalam sampel

Gravimetri rendah - 100%

Volumetri rendah - 100%

Colorimetri ppm - rendah

Keuntungan menggunakan cara basah adalah reaksi dapat terjadi dengan

cepat dan relatif mudah untuk dikerjakan.



Analisis serapan atom (AAS)

AAS (atomic absorption spectroscopy) ini dapat dimasukkan dalam analisis kimia

cara basah karena sampel asli yang akan dianalisis secara sempurna terlarutkan

dalam suatu larutan sebelum dilakukan analisis. Cara ini didasarkan

atas pengamatan panjang gelombang yang dipancarkan suatu unsur atau serapan

suatu panjang gelombang oleh suatu unsur. Dalam perkembangannya

yang terakhir alat ini dilengkapi oleh inductively coupled plasma (ICP) dan

metode ICP-mass spectrometric (ICP-MS).

Sumber energi yang digunakan pada teknik ini adalah lampu katoda dengan

energi berkisar antara cahaya tampak sampai ultraviolet dari spektrum

elektromagnetik. Sampel dalam bentuk larutan dipanas-kan, dengan anggapan

atom-atom akan bebas dari ikatan kimianya. Pada sampel panas dilewatkan

sinar katoda, akan terjadi penyerapan energi yang akan terekam

dalam spektrometer.



Analisis fluoresen sinar X (XRF)

Analisis ini juga dikenal dengan spektrografi emisi sinar X, yang banyak digunakan

untuk laboratorium penelitian yang mempelajari kimia substansi anorganik.

Di samping untuk laboratorium penelitian analisis ini juga digunakan

untuk keperluan industri, seperti: industri tambang (untuk kontrol kualitas

hasil yang akan dipasarkan), industri kaca dan keramik, pabrik logam dan

bahan baku logam, dan dalam perlindungan lingkungan dan pengawasan pulusi.

Pada analisis ini sampel digerus menjadi bubuk dan ditekan dalam bentuk

pelet bundar. Pelet ini nantinya akan ditembak dengan sinar X. Spektrum

emisi sinar X yang dihasilkan merupakan ciri-ciri tiap-tiap unsur yang terkandung

dalam sampel.

Analisis ini dapat digunakan untuk penentuan sebagian besar unsur, dan

juga sangat sensitif untuk penentuan secara tepat beberapa unsur jejak (seperti

Y, Zr, Sr, Rb dalam kisaran ppm).



Electron probe microanalysis

Metode ini didasarkan atas prinsip yang sama dengan analisis fluoresen sinar

X, kecuali energi yang dipakai bukan tabung sinar X tetap digantikan oleh

sinar elektron. Disebut mikroanalisis karena dapat menganalisis baik kualitatif

maupun kuantitatif material dalam jumlah yang sangat sedikit. Sampel

yang dianalisis biasanya berbentuk sayatan yang sudah dikilapkan (polished

section atau polished thin section) dari suatu mineral, batuan atau material

padat yang lain.

Volume minimum yang dapat dianalisis dengan metode ini sekitar 10 sampai

20 fim3, yang dalam satuan berat sekitar 10-11 gram (untuk material silikat).



Analisis spektrografik optis

Spektrograif emisi optik didasarkan pada kenyataan bahwa atom suatu unsur

dapat menghasilkan energi. Ketika energi ini terdispersi, dengan menggunakan

prisma dapat direkam sebagai suatu spektrum. Jumlah garis dan intensitas

garis dalam spektrum yang terekam ditentukan oleh konfigurasi atom.

Analisis kuantitatif dengan teknik ini memerlukan pengukuran terhadap ketajaman

dari garis-garis spektral yang terekam dalam fotograf.





3.2 Sifat-sifat fisik mineral

Penentuan nama mineral dapat dilakukan dengan membandingkan sifat-sifat

fisik mineral antara mineral yang satu dengan mineral yang lainnya. Sifat-sifat

fisik mineral tersebut meliputi: warna, kilap (luster), kekerasan (hardness), cerat

(streak), belahan (cleavage), pecahan (fracture), struktur/bentuk kristal, berat

jenis, sifat dalam (tenacity), dan kemagnetan.





Warna adalah kesan mineral jika terkena cahaya. Warna mineral dap20

at dibedakan menjadi dua, yaitu idiokromatik, bila warna mineral selalu

tetap, umumnya dijumpai pada mineral-mineral yang tidak tembus cahaya

(opak), seperti galena, magnetit, pirit; dan alokromatik, bila warna mineral

tidak tetap, tergantung dari material pengotornya. Umumnya terdapat pada

mineral-mineral yang tembus cahaya, seperti kuarsa, kalsit.

Kilap adalah kesan mineral akibat pantulan cahaya yang dikenakan

padanya. Kilap dibedakan menjadi dua, yaitu kilap logam dan kilap bukanlogam.

Kilap logam memberikan kesan seperti logam bila terkena cahaya.

Kilap ini biasanya dijumpai pada mineral-mineral yang mengandung logam

atau mineral bijih, seperti emas, galena, pirit, kalkopirit. Kilap bukan-logam

tidak memberikan kesan seperti logam jika terkena cahaya. Kilap jenis ini dapat

dibedakan menjadi:



_ Kilap kaca (vitreous luster)

memberikan kesan seperti kaca bila terkena cahaya, misalnya: kalsit,

kuarsa, halit.



_ Kilap intan (adamantine luster)

memberikan kesan cemerlang seperti intan, contohnya intan



_ Kilap sutera (silky luster)

memberikan kesan seperti sutera, umumnya terdapat pada mineral yang

mempunyai struktur serat, seperti asbes, aktinolit, gipsum



_ Kilap damar (resinous luster)

memberikan kesan seperti damar, contohnya: sfalerit dan resin



_ Kilap mutiara (pearly luster)

memberikan kesan seperti mutiara atau seperti bagian dalam dari kulit

kerang, misalnya talk, dolomit, muskovit, dan tremolit.



_ Kilap lemak (greasy luster)

menyerupai lemak atau sabun, contonya talk, serpentin



_ Kilap tanah

kenampakannya buram seperti tanah, misalnya: kaolin, limonit, bentonit.





Kekerasan adalah ketahanan mineral terhadap suatu goresan. Secara relatif

sifat fisik ini ditentukan dengan menggunakan skala Mohs, yang dimulai dari

skala 1 yang paling lunak hingga skala 10 untuk mineral yang paling keras.

Skala Mohs tersebut meliputi (1) talk, (2) gipsum, (3) kalsit, (4) fluorit, (5) apatit,

(6) feldspar, (7) kuarsa, (8) topaz, (9) korundum, dan (10) intan.



Cerat adalah warna mineral dalam bentuk bubuk. Cerat dapat sama atau

berbeda dengan warna mineral. Umumnya warna cerat tetap. Belahan

adalah kenampakan mineral berdasarkan kemampuannya membelah melalui

bidang-bidang belahan yang rata dan licin (Gambar 3.1). Bidang belahan

umumnya sejajar dengan bidang tertentu dari mineral tersebut.



Pecahan adalah kemampuan mineral untuk pecah melalui bidang yang

tidak rata dan tidak teratur. Pecahan dapat dibedakan menjadi: (a) pecahan

konkoidal, bila memperlihatkan gelombang yang melengkung di permukaan

(Gambar 3.2); (b) pecahan berserat/fibrus, bila menunjukkan kenampakan

seperti serat, contohnya asbes, augit; (c) pecahan tidak rata, bila memperlihatkan

permukaan yang tidak teratur dan kasar, misalnya pada garnet;

(d) pecahan rata, bila permukaannya rata dan cukup halus, contohnya: mineral

lempung; (e) pecahan runcing, bila permukaannya tidak teratur, kasar,

dan ujungnya runcing-runcing, contohnya mineral kelompok logam murni;

(f) tanah, bila kenampakannya seperti tanah, contohnya mineral lempung.



Bentuk mineral dapat dikatakan kristalin, bila mineral tersebut mempunyai

bidang kristal yang jelas dan disebut amorf, bila tidak mempunyai batasbatas

kristal yang jelas. Mineral-mineral di alam jarang dijumpai dalam bentuk

kristalin atau amorf yang ideal, karena kondisi pertumbuhannya yang biasanya

terganggu oleh proses-proses yang lain. Srtruktur mineral dapat dibagi

menjadi beberapa, yaitu:



_ Granular atau butiran: terdiri atas butiran-butiran mineral yang mempunyai

dimensi sama, isometrik.



_ Struktur kolom, biasanya terdiri dari prisma yang panjang dan bentuknya

ramping. Bila prisma tersebut memanjang dan halus, dikatakan

mempunyai struktur fibrus atau berserat.

Photobucket

GAMBAR 3.1: Belahan tiga arah pada gipsum yang dihasilkan dari fragmen semirombohedral

(Hibbard, 2002)


Photobucket


GAMBAR 3.2: Pecahan konkoidal pada beril (Hibbard, 2002



_ Struktur lembaran atau lamelar, mempunyai kenampakan seperti lembaran.

Struktur ini dibedakan menjadi: tabular, konsentris, dan foliasi.



_ Struktur imitasi, bila mineral menyerupai bentuk benda lain, seperti

asikular, filiformis, membilah, dll.



Sifat dalam merupakan reaksi mineral terhadap gaya yang mengenainya,

seperti penekanan, pemotongan, pembengkokan, pematahan, pemukulan

atau penghancuran. Sifat dalam dapat dibagi menjadi: rapuh (brittle), dapat

diiris (sectile), dapat dipintal (ductile), dapat ditempa (malleable), kenyal/lentur

(elastic), dan fleksibel (flexible).



3.3 Sistematika mineral

Sistematika atau klasifikasi mineral yang biasa digunakan adalah klasifikasi

dari Dana, yang mendasarkan pada kemiripan komposisi kimia dan struktur

kristalnya. Dana membagi mineral menjadi delapan golongan (Klein & Hurlbut,

1993), yaitu:



1. Unsur murni (native element), yang dicirikan oleh hanya memiliki satu

unsur kimia, sifat dalam umumnya mudah ditempa dan/atau dapat dipintal,

seperti emas, perak, tembaga, arsenik, bismuth, belerang, intan,

dan grafit.



2. Mineral sulfida atau sulfosalt, merupakan kombinasi antara logam atau

semi-logam dengan belerang (S), misalnya galena (PbS), pirit (FeS2),

proustit (Ag3AsS3), dll



3. Oksida dan hidroksida, merupakan kombinasi antara oksigen atau

hidroksil/air dengan satu atau lebih macam logam, misalnya magnetit

(Fe3O4), goethit (FeOOH).



4. Haloid, dicirikan oleh adanya dominasi dari ion halogenida yang elektronegatif,

seperti Cl, Br, F, dan I. Contoh mineralnya: halit (NaCl), silvit

(KCl), dan fluorit (CaF2).



5. Nitrat, karbonat dan borat, merupakan kombinasi antara logam/semilogam

dengan anion komplek, CO3 atau nitrat, NO3 atau borat

(BO3). Contohnya: kalsit (CaCO3), niter (NaNO3), dan borak

(Na2B4O5(OH)4 . 8H2O).

6. Sulfat, kromat, molibdat, dan tungstat, dicirikan oleh kombinasi logam

dengan anion sulfat, kromat, molibdat, dan tungstat. Contohnya: barit

(BaSO4), wolframit ((Fe,Mn)Wo4)



7. Fosfat, arsenat, dan vanadat, contohnya apatit (CaF(PO4)3), vanadinit

(Pb5Cl(PO4)3)



8. Silikat, merupakan mineral yang jumlah meliputi 25% dari keseluruhan

mineral yang dikenal atau 40% dari mineral yang umum dijumpai.

Kelompok mineral ini mengandung ikatan antara Si dan O. Contohnya:

kuarsa (SiO2), zeolit-Na (Na6[(AlO2)6(SiO2)30] . 24H2O).




Photobucket


GAMBAR 3.3: Beberapa kebiasaan mineral dan asal mulanya (Klein & Hurlbut, 1993)


Element dan Proses Dalam Pembentukan Hydrokarbon

migas.jpg Banyak orang bertanya-tanya bagaimana sih minyak itu terbentuk dan kenapa tidak semua tempat bisa punya jebakan minyak dan gas bumi? Jadi inget waktu dulu diceritain kalo di suatu tempat ada minyak bumi berarti dulu dinosaurus pernah tinggal dan mati disitu. Terus karena dinosaurus itu tertimbun dan mengalami peruraian maka berubahlah dinosaurus itu menjadi organik material dan akhirnya menjadi minyak bumi. Hmmmm…salah satu penjelasan yang masuk akal. Tapi kalo dipikir-pikir lagi kenapa cuma dinosaurus saja yang bisa jadi minyak gimana dengan yang lain???

Nah looohhh….mulailah kita berpikir lebih panjang lagi untuk bisa menjelaskan proses terbentuknya dan terjebaknya minyak dan gas bumi. Ada suatu analog yang bisa kita pakai untuk menjelaskan terjebaknya hydrocarbon. Seperti halnya membuat kue (sllluurrppp), sebelum kita bisa menikmati kue itu maka kita harus punya bahan dasar kue dan proses gimana membuat kue. Hal ini sama dengan minyak bumi, sebelum minyak terjebak maka kita perlu element atau unsur dan proses pembentuk minyak dan gas bumi.

petroleum-system.jpg Element atau unsur minyak bumi bisa dibagi menjadi 5 bagian.

1. Batuan induk (Source): batuan yang mempunyai banyak kandungan material organik. Batuan ini biasanya batuan yang mempunyai sifat mampu mengawetkan kandungan material organik seperti batu lempung atau batuan yang punya banyak kandungan material organik seperti batu gamping.

2. Batuan penyimpan (Reservoir): batuan yang mempunyai kemampuan menyimpan fluida seperti batu pasir dimana minyak atau gas dapat berada di antara butiran batu pasir. Atau bisa juga di batu gamping yang banyak rongga-rongganya. Intinya batu yang punya rongga dan rongga-rongga ini terhubung satu sama lain.

3. Batuan penutup (Seal): batuan yang impermeable atau batuan yang tidak gampang tembus karena berbutir sangat halus dimana butiran satu sama lain sangat rapat.

4. Migrasi (Migration): berpindahnya minyak atau gas bumi yang terbentuk dari batuan induk ke batuan penyimpan sampai dimana minyak dan gas bumi tidak dapat berpindah lagi.

5. Jebakan (Trap): bentuk dari suatu geometri yang mampu menahan minyak dan gas bumi untuk dapat berkumpul.

migration.jpg Proses juga tidak kalah pentingnya dengan unsur penyusun minyak bumi. Kalau kita punya unsur tapi proses tidak mendukung atau sebaliknya maka minyak bumi juga tidak akan terbentuk. Proses juga bisa dibagi menjadi 5 tahap.

1. Pembentukan (Generation): Tekanan dari batuan2 di atas batuan induk membuat temperatur dan tekanan menjadi lebih besar dan dapat menyebabkan batuan induk berubah dari material organik menjadi minyak atau gas bumi.

2. Migrasi atau perpindahan (Migration): Senyawa hidrokarbon (minyak dan gas bumi) akan cenderung berpindah dari batuan induk (source) ke batuan penyimpan (reservoir) karena berat jenisnya yang ringan dibandingkan air.

3. Pengumpulan (Accumulation): Sejumlah senyawa hidrokarbon yang lebih cepat berpindah dari batuan induk ke batuan penyimpan dibandingkan waktu hilangnya jebakan akan membuat minyak dan gas bumi terkumpul.

4. Penyimpanan (Preservation): Minyak atau gas bumi tetap tersimpan di batuan penyimpan dan tidak berubah oleh proses lainnya seperti biodegradation (berubah karena ada mikroba-mikroba yang dapat merusak kualitas minyak).

5. Waktu (Timing): Jebakan harus terbentuk sebelum atau selama minyak bumi berpindah dari batuan induk ke batuan penyimpan.

Nah…..kalo semuanya ini terpenuhi maka kemungkinan besar kita bisa menemukan jebakan minyak atau gas bumi.

Pengenalan Bahan Peledak

1. Bahan peledak

Bahan peledak yang dimaksudkan adalah bahan peledak kimia yang didefinisikan sebagai suatu bahan kimia senyawa tunggal atau campuran berbentuk padat, cair, atau campurannya yang apabila diberi aksi panas, benturan, gesekan atau ledakan awal akan mengalami suatu reaksi kimia eksotermis sangat cepat dan hasil reaksinya sebagian atau seluruhnya berbentuk gas disertai panas dan tekanan sangat tinggi yang secara kimia lebih stabil.

Panas dari gas yang dihasilkan reaksi peledakan tersebut sekitar 4000° C. Adapun tekanannya, menurut Langerfors dan Kihlstrom (1978), bisa mencapai lebih dari 100.000 atm setara dengan 101.500 kg/cm² atau 9.850 MPa (» 10.000 MPa). Sedangkan energi per satuan waktu yang ditimbulkan sekitar 25.000 MW atau 5.950.000 kcal/s. Perlu difahami bahwa energi yang sedemikian besar itu bukan merefleksikan jumlah energi yang memang tersimpan di dalam bahan peledak begitu besar, namun kondisi ini terjadi akibat reaksi peledakan yang sangat cepat, yaitu berkisar antara 2500 - 7500 meter per second (m/s). Oleh sebab itu kekuatan energi tersebut hanya terjadi beberapa detik saja yang lambat laun berkurang seiring dengan perkembangan keruntuhan batuan.

2. Reaksi dan produk peledakan

Peledakan akan memberikan hasil yang berbeda dari yang diharapkan karena tergantung pada kondisi eksternal saat pekerjaan tersebut dilakukan yang mempengaruhi kualitas bahan kimia pembentuk bahan peledak tersebut. Panas merupakan awal terjadinya proses dekomposisi bahan kimia pembentuk bahan peledak yang menimbulkan pembakaran, dilanjutkan dengan deflragrasi dan terakhir detonasi. Proses dekomposisi bahan peledak diuraikan sebagai berikut:

a) Pembakaran adalah reaksi permukaan yang eksotermis dan dijaga keberlangsungannya oleh panas yang dihasilkan dari reaksi itu sendiri dan produknya berupa pelepasan gas-gas. Reaksi pembakaran memerlukan unsur oksigen (O2) baik yang terdapat di alam bebas maupun dari ikatan molekuler bahan atau material yang terbakar. Untuk menghentikan kebakaran cukup dengan mengisolasi material yang terbakar dari oksigen. Contoh reaksi minyak disel (diesel oil) yang terbakar sebagai berikut:
CH3(CH2)10CH3 + 18½ O2 ® 12 CO2 + 13 H2O

b) Deflagrasi adalah proses kimia eksotermis di mana transmisi dari reaksi dekomposisi didasarkan pada konduktivitas termal (panas). Deflagrasi merupakan fenomena reaksi permukaan yang reaksinya meningkat menjadi ledakan dan menimbulkan gelombang kejut shock wave) dengan kecepatan rambat rendah, yaitu antara 300 – 1000 m/s atau lebih rendah dari kecep suara (subsonic). Contohnya pada reaksi peledakan low explosive (black powder)sebagai bagai berikut:
v Potassium nitrat + charcoal + sulfur
20NaNO3 + 30C + 10S ® 6Na2CO3 + Na2SO4 + 3Na2S +14CO2 + 10CO + 10N2
v Sodium nitrat + charcoal + sulfur
20KNO3 + 30C + 10S ® 6K2CO3 + K2SO4 + 3K2S +14CO2 +10CO + 10N2

c) Ledakan, menurut Berthelot, adalah ekspansi seketika yang cepat dari gas menjadi bervolume lebih besar dari sebelumnya diiringi suara keras dan efek mekanis yang merusak. Dari definisi tersebut dapat tersirat bahwa ledakan tidak melibatkan reaksi kimia, tapi kemunculannya disebabkan oleh transfer energi ke gerakan massa yang menimbulkan efek mekanis merusak disertai panas dan bunyi yang keras. Contoh ledakan antara lain balon karet ditiup terus akhirnya meledak, tangki BBM terkena panas terus menerus bisa meledak, dan lain-lain.

d) Detonasi adalah proses kimia-fisika yang mempunyai kecepatan reaksi sangat tinggi, sehingga menghasilkan gas dan temperature sangat besar yang semuanya membangun ekspansi gaya yang sangat besar pula. Kecepatan reaksi yang sangat tinggi tersebut menyebarkan tekanan panas ke seluruh zona peledakan dalam bentuk gelombang tekan kejut (shock compression wave) dan proses ini berlangsung terus menerus untuk membebaskan energi hingga berakhir dengan ekspansi hasil reaksinya. Kecepatan rambat reaksi pada proses detonasi ini berkisar antara 3000 – 7500 m/s. Contoh kecepatan reaksi ANFO sekitar 4500 m/s. Sementara itu shock compression wave mempunyai daya dorong sangat tinggi dan mampu merobek retakan yang sudah ada sebelumnya menjadi retakan yang lebih besar. Disamping itu shock wave dapat menimbulkan symphatetic detonation, oleh sebab itu peranannya sangat penting di dalam menentukan jarak aman (safety distance) antar lubang. Contoh proses detonasi terjadi pada jenis bahan peledakan antara lain:

v TNT : C7H5N3O6 ® 1,75 CO2 + 2,5 H2O + 1,5 N2 + 5,25 C
v ANFO : 3 NH4NO3 + CH2 ® CO2 + 7 H2O + 3 N2
v NG : C3H5N3O9 ® 3 CO2 + 2,5 H2O + 1,5 N2 + 0,25 O2
v NG + AN : 2 C3H5N3O9 + NH4NO3 ® 6 CO2 + 7 H2O + 4 N4 + O2

Dengan mengenal reaksi kimia pada peledakan diharapkan peserta akan lebih hati-hati dalam menangani bahan peledak kimia dan mengetahui nama-nama gas hasil peledakan dan bahayanya.

3. Klasifikasi bahan peledak

Bahan peledak diklasifikasikan berdasarkan sumber energinya menjadi bahan peledak mekanik, kimia dan nuklir. Karena pemakaian bahan peledak dari sumber kimia lebih luas dibanding dari sumber energi lainnya, maka pengklasifikasian bahan peledak kimia lebih intensif diperkenalkan. Pertimbangan pemakaiannya antara lain, harga relatif murah, penanganan teknis lebih mudah, lebih banyak variasi waktu tunda (delay time) dan dibanding nuklir tingkat bahayanya lebih rendah. Bahan peledak permissible dalam klasifikasi di atas perlu dikoreksi karena tidak semua merupakan bahan peledak lemah. Bahan peledak permissible digunakan khusus untuk memberaikan batubara ditambang batubara bawah tanah dan jenisnya adalah blasting agent yang tergolong bahan peledak kuat.

Sampai saat ini terdapat berbagai cara pengklasifikasian bahan peledak kimia, namun pada umumnya kecepatan reaksi merupakan dasar pengklasifikasian tersebut.


Menurut R.L. Ash (1962), bahan peledak kimia dibagi menjadi:
Bahan peledak kuat (high explosive) bila memiliki sifat detonasi atau meledak dengan kecepatan reaksi antara 5.000 – 24.000 fps (1.650 – 8.000 m/s)
Bahan peledak lemah (low explosive) bila memiliki sifat deflagrasi atau terbakar kecepatan reaksi kurang dari 5.000 fps (1.650 m/s).

4. Klasifikasi bahan peledak industri

Bahan peledak industri adalah bahan peledak yang dirancang dan dibuat khusus untuk keperluan industri, misalnya industri pertambangan, sipil, dan industri lainnya, di luar keperluan militer. Sifat dan karakteristik bahan peledak (yang akan diuraikan pada pembelajaran 2) tetap melekat pada jenis bahan peledak industri. Dengan perkataan sifat dan karakter bahan peledak industri tidak jauh berbeda dengan bahan peledak militer, bahkan saat ini bahan peledak industri lebih banyak terbuat dari bahan peledak yang tergolong ke dalam bahan peledak berkekuatan tinggi (high explosives).