Selasa, 30 Desember 2008

Geologi Ilmu yang Kurang Diminati

Geologi adalah ilmu yang mempelajari tentang bumi. Geologi Sebenarnya sudah diperkenalkan kepada pelajar SMP dan SMU melalui mata pelajaran geografi. Geologi berbeda dengan geografi, geologi lebih mendalami bumi beserta isinya sedangkan geografi cangkupannya lebih luas yaitu mengenai bumi beserta lapisan-lapisannya dan kaitannya dengan ilmu social.

Ilmu Geologi sepertinya kurang diminati oleh para pelajar SMU yang mau meneruskan studinya ke jenjang perkuliahan. Hal ini dapat terlihat dari ketidaktahuan masyarakat dalam hal ini pelajar terhadap geologi. Banyak pelajar yang tidak mengetahui apa itu geologi. Mereka lebih berminat kepada ilmu-ilmu yang lain seperti MIPA (Matematika dan Ilmu Pengetahuan Alam), Teknik Sipi, Teknik Industri, Teknik Informatika, dan lain-lain. Rasanya jarang sekali pelajar yang menjadikan Teknik Geologi sebagai pilihan pertama mereka. Hal ini dikarenakan oleh kurangnya ilmu geologi diterapkan pada sekolah umum dan ilmu geologi yang jarang terekspos ke media massa.

Padahal prospek kerja Geologist (sebutan untuk para ahli geologi) sangatlah cerah. Tidak ada satu orang pun Geologist yang sulit mendapatkan pekerjaan di tengah banyaknya pengangguran sarjana. Hal ini dikarenakan sangat dibutuhkannya tenaga geologi dalam dunia pekerjaan khususnya bidang migas. Apalagi melihat persediaan minyak dunia yang semakin terbatas mengakibatkan geologist sangat dibutuhkan untuk mencari sumber minyak baru. Walaupun Lulusan Geologi mempunyai IP rendah, ia masih dapat dengan mudah mendapatkan pekerja
an.

Paleontologi

Fosil

Fosil, dari bahasa Latin fossa yang berarti "galian", adalah sisa-sisa atau bekas-bekas makhluk hidup yang menjadi batu atau mineral. Untuk menjadi fosil, sisa-sisa hewan atau tanaman ini harus segera tertutup sedimen. Oleh para pakar dibedakan beberapa macam fosil. Ada fosil batu biasa, fosil yang terbentuk dalam batu ambar, fosil ter, seperti yang terbentuk di sumur ter La Brea di Kalifornia. Hewan atau tumbuhan yang dikira sudah punah tetapi ternyata masih ada disebut fosil hidup. Ilmu yang mempelajari fosil adalah paleontologi.

Secara singkat definisi dari fosil harus memenuhi syarat-syarat sebagai berikut:
1. Sisa-sisa organisme.
2. Terawetkan secara alamiah.
3. Pada umumnya padat/kompak/keras.
4. Berumur lebih dari 11.000 tahun.

Fosilisasi merupakan proses penimbunan sisa-sisa hewan atau tumbuhan yang terakumulasi dalam sedimen atau endapan-endapan baik yang mengalami pengawetan secara menyeluruh, sebagian ataupun jejaknya saja. Terdapat beberapa syarat terjadinya pemfodilan yaitu antara lain:
Organisme mempunyai bagian tubuh yang keras
1. Mengalami pengawetan
2. Terbebas dari bakteri pembusuk
3. Terjadi secara alamiah
4. Mengandung kadar oksigen dalam jumlah yang sedikit

5. Umurnya lebih dari 10.000 tahun yang lalu.

Istilah "fosil hidup" adalah istilah yang digunakan suatu spesies hidup yang menyerupai sebuah spesies yang hanya diketahui dari fosil. Beberapa fosil hidup antara lain ikan coelacanth dan pohon ginkgo. Fosil hidup juga dapat mengacu kepada sebuah spesies hidup yang tidak memiliki spesies dekat lainnya atau sebuah kelompok kecil spesies dekat yang tidak memiliki spesies dekat lainnya. Contoh dari kriteria terakhir ini adalah nautilus.

Eksplorasi Batu Bara

*Batubara

Cadangan batubara di Indonesia sangatlah banyak. Batubara di indonesia berumur Terrier tersebar di sumatera berjumlah 24,7 milyar ton (69,7%) di kalimantan 11,5 milyar ton (31,6%) dan sisanya di jawa, sulawesi dan Irian Jaya. Sebagian besar (60%) berjenis lignit dengan ciri-ciri mengandung kadar air total tinggi (lebih dari 30%) nilai kalor antara 400o-500o : 400-500 kcal/kg. Batuan jenis ini terdapat di sumatera selatan/tengah dan kalimantan selatan, sedangkan sebagian lagi (36%) termasuk batubara jenis subbituminus dan bitumenus dengan ciri-ciri kandungan kadar air total 15% dan nilai kalor antara 6000-7000 kcal/kg. Sebagian kecil ditemukan batubara jenis antrasit dan semi antrasit yang terdapat di sumatera selatan (bukit asam dan mungkin di kalimantan barat dan daerah lainnya yang berhubungan dengan intrusi batuan beku terdapat batuan sedimen yang mengandung batubara. Melihat prospeknya dimasa mendatang banyak perusahaann-perusahaan yang bergerak di bidang ekplorasi dan eksploitasi batubara.

Mengingat batubara banyak digunakan sebagai bahan bakar pada berbagai industri seperti ketel uap, industri semen, industri kecil, dan untuk rumahtangga sebaga bahan bakartak langsung yaitu engan mengubah batubara menjadi bentuk lain melalui berbagai proses seperti gasifikasi, pencairan, karbonisasi, pembriketan, suspensi dan lain-lain. Selain sebagai bahan bakar, batubara dapat pula digunakan pada berbagai macam industri bukan sebagai bahan bakar antara lain diproses secara ekstraksi menjadi elektroda karbon. Antrsit misalnya, diproses menjadi reduktor melalui proses gasifikasi dapat dihasilkan produksi H2, CO2, dan CH4. Bentuk karbon lain yang dihasilkan dari batubara adalah karbon aktifbatubara direaksikan dengan hidrogen pada fase cair dengan suhu tinggi menghasilkan minyak motor, pitch, gas dan zat kimia aromatik.
Pada pemanfaatan batubara perlu diketahui sifat-sifat yang akan ditunjukkan oleh batubara tersebut, baik yang bersifat fisik, kimiawi, dan mekanis. Sifat-sifat ini akan dapat diketahui dari hasil pengujian dan analisis batubara.
• Berdasarkan pertimbangan tersebut maka sangatlah penting untuk mengetahui bagaimana proses pembentukan batubara, faktor yang mempengaruhi pembentukan batubara serta faktor lain yang sangat berpengaruh terhadap komposisi kimia,fisik, dan mekanis batubara dan jumlah sumberdaya batubara. Oleh sebab itu maka studi dan analisis mengenai kandungan dan sifat-sifat batubara sangatlah penting. Selain itu hal ini juga sangat bermanfaat khususnnya untuk mengetahui kwalitas dari batubara, sehingga dapat ditentukan jenis batubara yang bernilai ekonomis tinggi dan laku di pasaran nasional dan internasional sehingga dapat mendatangkan keuntungan yang maksimum bagi perusahaan. 

*Analisa data lapangan

Data yang didapatkan berupa data hasil bor kemudian akan dianalisis dan kemudian direlevankan dengan kajian pustaka dan literatur yang sebelumnya telah dilakukan, setelah ditemui titik releven, kemudian data akan diolah dengan menggunakan sistem komputerisasi dengan perangkat software yang mendukung yang akan megolah aspek-aspek yang dibutuhkan seperti model endapan, penyebarannya, kadar, dsb . Hasil akhir dari pengolahan dan analisis data ini akan disusun dalam bentuk laporan yang bersifat naratif, deskriptif, tabulatif, dan spasial/diagramis.

Alat bantu utama yang akan digunakan pada tahapan ini adalah seperangkat komputer termasuk printer dan software, terutama yang berhubungan dengan tabulasi data dan diagram spasial serta untuk menghitung cadangan sesuai dengan data hasil pengeboran dan desain model penambangan.. Kegiatan ini akan dilakukan selama 2 (dua) minggu.

Provenance,Proses,dan Diagenesis Sedimen

Provenance, Proses, dan Diagenesis Sedimen

Batuan sedimen berasal dari pelapukan dan erosi batuan yang telah ada sebelumnya. Sedimen tertransportasi oleh bermacam-macam agen termasuk gravitasi, air yang mengalir, angin dan es yang bergerak (gletser). Sediment tersebut akan berpindah dari asalnya ke tempat-tempat pengendapan yang beragam. Di tempat tersebut sedimen diendapkan dalam berbagai macam litofasies yang karakternya tergantung pada lingkungan pengendapannya. Setelah pengendapan dan terjadinya timbunan sedimen, akumulasi sedimen itu mengalami diagenesis. Proses-peroses fisika, kimia dan biologi mengakibatkan: (1) perubahan dari sediment menjadi batuan sediment, (2) terjadinya modifikasi pada tekstur dan mineralogi pada batuan. Diagenesis berlawanan dengan pelapukan karena proses pelapukan merupakan perubahan dari batuan menjadi tanah. Arah reaksi keduanya berlawanan. Pada pelapukan terjadi degradasi dan proses yang mengakibatkan batuan menjadi lepas, terdiri dari mineral yang stabil pada permukaan bumi, sedangkan pada diagenesis material sedimen berubah menjadi lebih padu.

Pelapukan dan Provenance
Sifat endapan sediment pada berbagai lingkungan tergantung pada beberapa faktor yaitu :
1. Sumber atau tempat sediment itu berasal, yang mengontrol jenis material yang terdapat sebagai sedimen
2. Pelapukan dan transportasi, yang mengontrol perubahan-perubahan yang terjadi pada material sedimen
3. Keadaan lingkungan pengendapan sedimen.

Pelapukan
Pelapukan secara umum terbagi menjadi proses yaitu:
1. Proses fisika yang disebut sebagai disintegrasi
2. Proses kimia yang disebut dekomposisi.

Prinsip disintegrasi pada pembentukan tanah atau sedimen yaitu berkurangnya ukuran butir tanpa perubahan pada komposisi kimianya. Hal ini terjadi akibat penghancuran secara fisika melalui:
• Abrasi, yaitu proses penggerusan batuan oleh agen transport seperti air dan es.
• Frost Action, yaitu proses pembekuan air dalam batuan. Hal ini mengakibatkan batuan terpecah akibat bertambahnya volume air ketika membeku.
• Aktivitas biologi, di antaranya rekahan pada batuan karena pertumbuhan akar.
Berkurangnya ukuran butir mengakibatkan bertambahnya luas permukaan partikel, hal ini tentunya akan meningkatkan laju reaksi kimia yang terjadi selama proses dekomposisi.

Proses dekomposisi diantaranya oksidasi, reduksi, solusi (larut), hidrasi, dan hidrolisis. Oksidasi adalah proses dimana bilangan oksidasi (valensi) suatu ion meningkat sedangkan reduksi adalah kebalikannya. Salah satu proses oksidasi yang umum pada pelapukan yaitu oksidasi pada besi. Contohnya adalah magnetit, suatu mineral yang umum ditemukan pada batuan beku, sedimen dan metamorf yang berubah menjadi mineral hasil pelapukan yang umum yaitu hematite.

4Fe2O3.FeO + O2 ---> 6 Fe2O3
Magnetit + Oksigen hematite
(Contoh proses reduksi yaitu pembentukan pirit pada kondisi anaerobik.)

Air berperan sangat penting dalam proses dekomposisi sebagai pelarut atau reaktan. Contohnya air dan asam pada larutan merupakan dua agen pelarut utama. Pelarutan adalah proses yang mana material yang dapat larut terlarut, atau pecah menjadi ion. Contohnya yaitu dekomposisi pada piroksen:

(Mg, Fe, Ca)SiO3 + 2 H+ + H2O ---> Mg2+ + Fe2+ + Ca2+ + H4SiO4
Piroksen + Ion Hidrogen + air Ion Mg, Fe, Ca + molekul silicic acid

Reaksi yang sama terjadi pada mineral ferromagnesian silicates yang lain. Ion Ca, Mg dan silicic acid yang dihasilkan pada reaksi ini tertransportasikan jauh melalui larutan, sedangkan ion Fe mungkin mengalami oksidasi atau hidrasi atau keduanya dan terpresipitasi sebagai hematite atau geotit. Hal yang sama, mineral karbonat terlarutkan menghasilkan ion Ca, Mg dan molekul bikarbonat, yang semuanya tertransportasi sebagai larutan.

Air juga penting dalam hidrasi dan hidroslisis. Hidrasi adalah reaksi air dan komponen yang lain yang menghasilkan fase lain. Contohnya, goetit yang dihasilkan dari hematite melalui reaksi hidrasi:

Fe2O3 + H2O ---> 2 FeOOH

Hidrolisis adalah reaksi kelebihan H+ atau OH- yang dihasilkan reaksi yang bersangkutan. Reaksi hidrolisis terlihat sebagai reaksi penggantian kation suatu struktur mineral oleh hydrogen. Contohnya, pelapukan olivine menjadi silicic acid, ion Fe dan Mg, dimana hydrogen menggantikan Mg dan Fe.

(Mg, Fe)2SiO4 + 4 H2O ---> xMg2+ + 2-xFe2+ + H4SiO4 + 4 (OH)-

Hal yang sama terjadi pada hidrolisis feldspar dan segera setelah itu membentuk mineral lempung kaolinit:

KAlSi3O8 +H2O ---> HAlSi3O8 + K+ + OH-

2 HAlSi3O8 + 9 H2O ---> Al2Si2O5(OH)4 + 4 H4SiO4

Setiap proses dekomposisi adalah perubahan mineral yang tidak stabil pada permukaan bumi berubah menjadi mineral, molekul, atau ion yang lebih stabil dibawah kondisi permukaan. Produk utama pada proses ini yaitu kuarsa, mineral lempung, oksida besi, dan ion seperti Ca2+ dan Mg2+. Tiga produk hasil pelapukan karbonat berupa ion Ca dan Mg-, Mineral lempung, dan kuarsa serta opal dihasilkan dari proses yang kira-kira sama dengan umur bumi yaitu 4,5 miliar tahun.

Kestabilan relatif dari mineral selama proses pelapukan dikemukakan oleh Goldich (1938) yang merupakan kebalikan dari Deret Bowen. Dia menemukan bahwa Olivine, Augite (klinopiroksen), dan Ca-plagioklas lebih mudah terlapukan dibandingkan dengan kuarsa dan muskovit. Walaupun secara umum hal ini benar, proses pelapukan lebih rumit dari perkiraan. Hal lain yang mempengaruhi adalah iklim, mikroba dan tanaman dan asam yang dihasilkannya. Olivine, augite, dan plagioklas mengandung unsur Mg, Na, K, Ca, yang mudah telepas melalui pemecahan ikatan ion dengan oksigen. Si, Al, dan Ti membentuk ikatan kovalen dengan oksigen yang lebih sulit untuk pecah, yang mencegah pemecahan mineral seperti kuarsa.

Provenance
Provenance adalah sumber material sedimen, yang merupakan faktor utama yang menentukan komposisi sedimen. Faktor provenance mengontrol proses pelapukan dan sifat sedimen yang dapat disuplai oleh berbagai macam agen. Faktor ini diantaranya relief dan elevasi yang merupakan fungsi dari setting tektonik, iklim dan vegetasi yang bersangkutan, serta komposisi dari batuan asal. Pada komposisi batuan asal kita bisa mengambil contoh yang sederhana, bila batuan asalnya banyak mengandung kuarsa maka sedimen yang dihasilkan akan banyak mengandung kuarsa juga. Bila batuan sumbernya kaya akan feldsfar maka sedimen yang dihasilkan akan banyak mengandung feldsfar dan mineral lempung tergantung dari tingkat pelapukan batuannya.

Relief dan elevasi dari provenance akan berpengaruh pada dekomposisi dan disintegrasi, dan transportasinya. Relief adalah perbedaan ketinggian didalam cekungan erosional, yang mengontrol laju erosi. Secara umum, daerah yang memiliki relief yang tinggi, yang merupakan daerah uplift yang aktif, akan mengalami laju erosi yang tinggi. Sebaliknya pada daerah yang berelief rendah yang umumnya datar memiliki laju erosi yang rendah. Daerah yang datar merupakan daerah metastabil dimana energi potensial minimum. Konsekuensinya material tidak bisa turun dan mengakibatkan laju disintegrasi rendah, hal ini akan mengakibatkan proses dekomposisi berlangsung cukuip lama.

Elevasi provenance juga penting, karena elevasi akan mempengaruhi iklim, dimana pada gilirannya akan mempengaruhi proses disintegrasi dan dekomposisi. Pada elevasi yang tinggi air akan membeku, hal ini tentunya akan menyebabkan proses disintegrasi terutama frost action berperan cukup dominan. Dengan demikian dapat disimpulkan bahwa pada elevasi yang tinggi proses disintegrasi cukup dominan sedangkan pada elevasi yang rendah terutama daerah tropis proses dekomposisi cukup dominan.

Iklim dan vegetasi juga memiliki peran yang penting. Pada iklim dingin laju proses dekomposisi akan rendah sedangkan laju proses disintegrasi akan tinggi. Sebaliknya pada iklim hangat proses dekomposisi akan lebih dominan daripada proses disintegrasi dan pada iklim panas proses yang dominan adalah disintegrasi sama seperti pada iklim dingin. Vegetasi akan banyak pada iklim hangat, basah dari pada iklim dingin dan panas. Vegetasi dapat menghasilkan asam organik dan senyawa lain yang dapat menyebabkan proses dekomposisi. Contohnya lava muda di Hawaii yang ditutupi oleh tumbuhan (lichens, yang banyak mengandung besi, terlapukan lebih tinggi daripada batuan yang sama dan seumur. Hal ini dapat menjawab pertanyaan mengenai proses disintegrasi dan dekomposisi pada pre-Devonian yang vegetasinya kurang, dimana pada pre-Devonian proses disintegrasi lebih penting dari pada dekomposisinya sehingga sedimennya sedikit mengandung lempung.

Produk hasil pelapukan
Produk yang dihasilkan dari pelapukan yaitu kuarsa, mineral lempung dan oksida besi dan hidrat yang merupakan material residu yang tertinggal di tanah yang dihasilkan dari batuan yang terdekomposisi tinggi. Silicic acid dan kation berbagai logam (termasuk Ca, Mg, Fe, Mn, Na, dan K) dan P akan tertransportasikan jauh dari sumbernya.

Transportasi sediment
Transportasi sedimen dimulai ketika material terlapukan dan ion terlarut. Transportasi material yang terlarut disebut transportasi larutan, sedangkan material padat tertransportasi melalui transportasi mekanik. Transportasi mekanik di antaranya falling, sliding, rolling, bouncing(saltation), flowing dan transportasi supensi.

Transportasi sedimen tergantung pada sifat fisik dari agen transportasi, sifat material, sifat fisik dari campuran agen transportasi dan material, dan gaya yang menyebabkan transportasi.

Agen transportasi diantaranya gravitasi, air mengalir, angin dan es yang bergerak. Gravitasi tidak hanya menyebabkan pergerakan material tetapi juga menggerakan arus air dan es untuk bergerak turun.

Transportasi mekanik, di antaranya:
• Transportasi gravitasi
Gravitasi merupakan agen utama yang mengakibatkan transportasi pada landslides dan massflow. Pada pergerakan masa subaeria (falls, slides, slumps, avalanches, mudflowa, dan subaerial debris flows) dan submarine debris flow transportasi terjadi ketika gaya yang menahan (resisting force) terlampaui.

Pada falls, slides, slumps dan avalanches, retakan dihasilkan ketika batuan kehilangan gaya kohesi antara partikelnya yang kemudian bergerak dan berhenti ketika energinya habis. Sedimen yang dihasilkan berupa breksi atau diamicite yang terpilah buruk, tidak berlapis.

Pada debris flows, mudflows dan olisostrom seluruh masa diendapkan sekali. Pergerakannya biasanya berlangsung ketika terdapat air yang mengakibatkan gaya gesek antar partikel mengecil dan mengakibatkan masa meluncur dan terendapkan dengan kacau. Produk yang dihasilkan terpilah buruk, banyak material Lumpur dan lapisan biasanya tebal dan massive.

Grain flow adalah aliran dari butiran sediment yang inkohesif yang terdapat pada lereng yang curam. Aliran terjadi ketika akumulasi sedimen melebih gaya gesek antar partikel dan ketika gempa bumi. Endapan yang dihasilkan berupa pasir yang terpilah baik, tak berstruktur sampai berlaminasi secara lokal.

• Transportasi glacial
Transportasi ini dihasilkan oleh gaya gravitasi terhadap aliran fluida, tetapi laju alirannya sangat lambat. Glacier membawa partikel melalui penggusuran sepanjang dasar dan sisinya. Partikel yang besar biasanya tertinggal dan yang lebih kecil akan terbawa lebih jauh. Sedimen yang terpilah baik, berukuran halus diendapkan sebagai outwash dan yang terpilah buruk dan kasar diendapkan sebagai till.

• Transportasi air dan udara
Ketika air dan udara bergerak terjadi gesekan antara fluida dengan sekitarnya. Turbulensi dimulai dekat batas dengan sekitarnya, seperti dekat dasar sungai sebagai hasil dari interaksi gaya di tempat tersebut. Faktor yang menentukan bergeraknya partikel adalah ukuran, densitas dan bentuk partikel, kecepatan aliran, viskositas fluida dan batas gaya gesek.
Sedimentasi akan terjadi ketika fluida melambat. Masing-masing ukuran partikel jatuh keluar dari suspensi dan menjadi bagian dari pergerakan bed load. Pada unit pengendapan dari suspensi biasanya berupa laminasi tabular, ketebalan bervariasi tetapi biasanya tipis saja. Lapisan dari bed load yang terendapkan melalui traksi mungkin tipis tetapi cenderung sedang sampai tebal dan membentuk cross bedding, imbrikasi butir dan ripple marks.

Transportasi kimia
Ion dan molekul yang dihasilkan dari dekomposisi akan menjadi bagian dari larutan dalam air tanah dan air permukaan. Selama perpindahan larutan mungkin mengalami pengenceran, pengkonsentrasian dan perubahan dalam kimianya karena reaksi dengan batuan yang dilaluinya. Jika bereaksi dengan batuan atau sediment, batuan dan sediment mengalami perubahan diagenesis. Presipitasi kimia yang terjadi selama diagenesis merupakan salah satu bentuk pengendapan kimia.

Diagenesis
Setelah sedimen terendapkan, diagenesis adalah proses yang bekerja pada sedimen tersebut. Diagenesis merupakan proses fisika, kimia dan biologi yang secara umum mengubah sedimen menjadi batuan sedimen. Diagenesis kemungkinan berlanjut bekerja setelah sedimen menjadi batuan, mengubah tekstur dan mineraloginya.

Tujuh proses diagenesis yang terjadi yaitu :
1. Kompaksi
2. Rekristalisasi
3. Pelarutan
4. Sementasi
5. Autigenisasi
6. Replacement
7. Bioturbasi

Kompaksi adalah proses yang menyebabkan volume sedimen berkurang. Ini dihasilkan oleh tekanan penutup (overburden), yang diakibatkan oleh berat dari sedimen dan batuan di atasnya. Tekanan ini mengakibatkan penyusunan kembali butiran dan pengeluaran fluida, hal ini menghasilkan pengurangan porositas batuan sedimen. Kemungkinan tingkat kompaksi merupakan fungsi dari ukuran butir, bentuk butir, pemilahan, porositas awal dan jumlah fluida yang terdapat dalam sedimen. Sedimen dengan pemilahan yang baik, membundar akan kurang kompak bila dibandingkan dengan sedimen yang terpilah buruk dan menyudut. Pada sedimen yang terpilah buruk ukuran butir yang kecil akan mengisi rongga antar butiran yang besar dan pada sedimen yang menyudut, ikatan antar butirnya akan sangat kuat karena bersifat saling mengunci. Pada pasir porositas awalnya sekitar 25% - 50%, pada sedimen karbonat kemungkinan cukup tinggi yaitu sekitar 50% - 75% dan pada lumpur lempung lebih dari 85%. Pada batuan sedimen porositas kecil yaitu 0% - 2% hal ini dikarenakan kompaksi dan proses diagnesis lain terutama sementasi.

Rekristalisasi adalah proses di mana kondisi fisika dan kima menyebabkan pengorientasian kembali kristal lattice pada butir mineral. Rekristalisasi bekerja melalui pelarutan dan presipitasi dari fase mineral yang terdapat pada batuan. Ketika fluida melewati batuan atau sedimen, komponen pada sedimen yang tidak stabil karena tekanan, pH, temperature akan mengalami pelarutan. Kemudian material yang terlarut itu akan mengalami transportasi dan akan terpresipitasi pada pori-pori sediment yang memiliki kondisi yang berbeda. Hal yang penting yaitu tekanan pelarutan, yaitu suatu proses di mana tekanan terkonsentrasi pada satu titik antara dua butir yang menyebabkan pelarutan dan migrasi ion atau molekul yang menjauhi titik itu. Lewat proses ini massa tertransportasi dari titik kontak menuju tempat dengan tekanan yang lebih rendah yang memungkinkan presipitasi dari larutan itu. Tentunya rekristalisasi ini akan menyebabkan pengurangan porositas sedimen dan memfasilitasi rekristalisasi tekstur.

Sementasi adalah proses di mana terjadi presipitasi kimia pada pembentukan kristal baru, terbentuk didalam pori-pori sedimen atau batuan yang mengikat satu butir dengan butir lainnya. Semen yang umum yaitu kuarsa, kalsit dan hematite, tetapi jenis semen secara luas di antaranya aragonite, Mg kalsit, dolomite, gypsum celesite, goethite, dan todorit. Tekanan pelarutan secara local dapat menghasilkan semen, tetapi banyak semen merupakan material baru (allochemical material) yang masuk melalui larutan. Jelas bahwa proses sementasi akan mengakibatkan berkurangnya porositas dan menghasilkan tekstur baru seperti spherulitic, comb texture, dan poikilotopic texture.

Autigenesis (neocrystalitation) adalah proses yang mana fase mineral baru mengalami kristalisasi didalam sediment atau batuan selama proses diagenesis ataupun setelahnya. Mineral baru mungkin terbentuk melalui reaksi di dalam fase yang terdapat dalam sedimen atau batuan, mungkin juga muncul karena presipitasi dari material yang masuk melalui fase fluida, atau dihasilkan dari kombinasi sedimen primer dan material yang masuk. Autigenesis operlap dengan pelapukan, sementasi dan biasanya rekristalisasi, dan kemungkinan menghasilkan replacement. Jenis dari fasa autigenesis jauh lebih beragam dibandingkan dengan mineral semen. Fase autigenesis termasuk silikat seperti kuarsa, K-feldspar, lempung,dan zeolite; carbonat seperti kalsit, dolomite dan carbonat besi; evaporate mineral seperti halit, sylvite, gypsum dan anhidrit;oksida seperti hematite, goetit, todorokit; dan mineral samping lainnyatermasuk sulfat, sulfide dan fosfat.

Replacement yaitu proses yang mana mieral baru menggantikan (secara kimia dan fisika) in situ pada endapan mineral. Replacement mungkin bersifat neomorphic, yang mana butiran yang baru memiliki fase yang sama dengan asalnya atau polimorpisme dari fase asalnya. Pseudomorfic yang mana fase baru merupakan tiruan dari bentuk eksternal dari fase yang digantikan tetapi fasenya berbeda, allomorphic yaitu replacement dalam bentuk fase baru yang biasanya berbeda bentuk kristalnya dan menggantikan sepenuhnya fase sediment asal. Fase replacement sama beragamnya dengan fase autigenesis, tetapi fase replacement yang penting yaitu dolomite, opal, kuarsa dan ilite.

Bioturbasi adalah aktifitas biologis yang terjadi dekat permukaan, termasuk burrowing, boring dan pencampuran sedimen oleh organisme. Pada beberapa kasus proses ini dapat meningkatkan kompaksi, menghancurkan laminasi dan perlapisan. Selama proses bioturbasi beberapa organisme mempresipitasikan material yang berfungsi sebagai semen.

Daigenesis biasanya dibagi menjadi tiga tahap, yaitu:
1. Eogenesis, proses awal diagenesis yang terdapat di antara endapan dan timbunan, atau dekat permukaan,
2. Mesogenesis, tahap tengah dari proses diagenesis yang terjadi setelah penimbunan,
3. Telogenesis, tahap akhir dari proses diagenesis.

Selasa, 16 Desember 2008

MINERALOGI

Bab akan menjelaskan gambaran umum mengenai mineralogi,

kimia mineral, sifat-sifat fisik mineral, dan sistematika mineral.

Mineral adalah zat atau benda yang biasanya padat dan homogen dan hasil

bentukan alam yang memiliki sifat-sifat fisik dan kimia tertentu serta umumnya

berbentuk kristalin. Meskipun demikian ada beberapa bahan yang terjadi

karena penguraian atau perubahan sisa-sisa tumbuhan dan hewan secara

alamiah juga digolongkan ke dalam mineral, seperti batubara, minyak bumi,

tanah diatome.



3.1 Kimia mineral

Kimia mineral merupakan suatu ilmu yang dimunculkan pada awal abad ke-

19,setelah dikemukakannya "hukum komposisi tetap" oleh Proust pada tahun

1799, teori atom Dalton pada tahun 1805, dan pengembangan metode analisis

kimia kuantitatif yang akurat. Karena ilmu kimia mineral didasarkan pada

pengetahuan tentang komposisi mineral, kemungkinan dan keterbatasan

analisis kimia mineral harus diketaui dengan baik. Analisis kimia kuantitatif

bertujuan untuk mengidentifikasi unsur-unsur yang menyusun suatu 

substansi dan menentukan jumlah relatif masing-masing unsur tersebut.

Analisis harus lengkap .seluruh unsur-unsur yang ada pada mineral harus

ditentukan. dan harus tepat.



Komposisi kimia sebagian besar mineral yang diketahui, menunjukkan suatu

kisaran tertentu mengenai penyusun dasarnya. Dalam analisis kimia, jumlah

kandungan unsur dalam suatu senyawa dinyatakan dengan persen berat

dan dalam analisis yang lengkap jumlah total persentase penyusunnya harus

100. Namun dalam prakteknya, akibat keterbatasan ketepatan, jumlah 100

merupakan suatu kebetulan; umumnya kisaran 99,5 sampai 100,5 sudah dianggap

sebagai analisis yang baik.



Prinsip-prinsip kimia yang berhubungan dengan kimia mineral

1. Hukum komposisi tetap

(The Law of Constant Composition) oleh Proust (1799):

"Perbandingan massa unsur-unsur dalam tiap senyawa adalah tetap"


2. Teori atom Dalton (1805)


1. Setiap unsur tersusun oleh partikel yang sangat kecil dan berbentuk

seperti bola yang disebut atom.



a) Atom dari unsur yang sama bersifat sama sedangkan dari unsur

yang berbeda bersifat berbeda pula.



b) Atom dapat berikatan secara kimiawi menjadi molekul.


Teknik analisis mineral secara kimia


Analisis kimia mineral (dan batuan) diperoleh dari beberapa macam teknik

analisis. Sebelum tahun 1947 analisis kuantitatif mineral diperoleh dengan

teknik analisis "basah", yang mana mineral dilarutkan dalam larutan tertentu.

Penentuan unsur-unsur dalam larutan biasanya dipakai satu atau lebih teknikteknik

berikut: (1) ukur warna (colorimetry), (2) analisis volumetri (titrimetri)

dan (3) analisis gravimetri.



Sejak tahun 1960 sebagian besar analisis telah dilakukan dengan teknik instrumental

seperti spektroskop serapan atom, analisis flouresen sinar X, analisis

electron microprobe, dan spektroskop emisi optis. Masing-masing teknik

ini memiliki preparasi sampel yang khusus dan memiliki keterbatasan deteksi

dan kisaran kesalahan sedang - baik. Hasil analisis biasanya ditampilkan

dalam bentuk tabel persen berat dari unsur-unsur atau oksida dalam mineral

yang dianalisis. Teknik analisis basah memberikan determinasi secara kuantitatif

variasi kondisi oksidasi suatu kation (seperti Fe2+ dengan Fe3+) dan juga

untuk determinasi kandungan H2O dari mineral-mineral hidrous. Metode

instrumen umumnya tidak dapat memberikan informasi seperti kondisi oksidasi

atau kehadiran H2O.



Dalam analisis kimia mineral dapat dibedakan menjadi dua macam, yaitu

analisis kimia kualitatif dan analisis kimia kuantitatif. Analisis kualitatif

menyangkut deteksi dan identifikasi seluruh komposisi dari suatu senyawa.

Analisis kuantitatif meliputi penentuan persen berat (atau parts per million

[ppm]) unsur-unsur dalam suatu senyawa. Dengan demikian kedua analisis

ini akan menjawab pertanyaan "Apa yang dikandung dan berapa besar jumlahnya?".

Analisis kualitatif awal umumnya sangat membantu dalam memutuskan

metode apa yang akan dipakai untuk analisis kuantitatif.



Analisis kimia basah

Cara ini biasanya dilakukan di laboratorium kimia. Setelah sampel digerus

menjadi bubuk, langkah pertama yang dilakukan adalah menguraikan sampel.

Biasanya pada tahap ini digunakan satu dari beberapa larutan asam,

seperti asam klorida (HCl), asam sulfat (H2SO4), atau asam florida (HF), atau

campuran dari larutan asam tersebut. Jika sampel sudah dalam bentuk larutan,

langkah selanjutnya adalah colorimetry, volumetri atau gravimetri untuk

menentukan unsur-unsur yang diinginkan.

Kisaran konsentrasi unsur-unsur berdasarkan teknik analisis ini adalah:

Metode Konsentrai unsur dalam sampel

Gravimetri rendah - 100%

Volumetri rendah - 100%

Colorimetri ppm - rendah

Keuntungan menggunakan cara basah adalah reaksi dapat terjadi dengan

cepat dan relatif mudah untuk dikerjakan.



Analisis serapan atom (AAS)

AAS (atomic absorption spectroscopy) ini dapat dimasukkan dalam analisis kimia

cara basah karena sampel asli yang akan dianalisis secara sempurna terlarutkan

dalam suatu larutan sebelum dilakukan analisis. Cara ini didasarkan

atas pengamatan panjang gelombang yang dipancarkan suatu unsur atau serapan

suatu panjang gelombang oleh suatu unsur. Dalam perkembangannya

yang terakhir alat ini dilengkapi oleh inductively coupled plasma (ICP) dan

metode ICP-mass spectrometric (ICP-MS).

Sumber energi yang digunakan pada teknik ini adalah lampu katoda dengan

energi berkisar antara cahaya tampak sampai ultraviolet dari spektrum

elektromagnetik. Sampel dalam bentuk larutan dipanas-kan, dengan anggapan

atom-atom akan bebas dari ikatan kimianya. Pada sampel panas dilewatkan

sinar katoda, akan terjadi penyerapan energi yang akan terekam

dalam spektrometer.



Analisis fluoresen sinar X (XRF)

Analisis ini juga dikenal dengan spektrografi emisi sinar X, yang banyak digunakan

untuk laboratorium penelitian yang mempelajari kimia substansi anorganik.

Di samping untuk laboratorium penelitian analisis ini juga digunakan

untuk keperluan industri, seperti: industri tambang (untuk kontrol kualitas

hasil yang akan dipasarkan), industri kaca dan keramik, pabrik logam dan

bahan baku logam, dan dalam perlindungan lingkungan dan pengawasan pulusi.

Pada analisis ini sampel digerus menjadi bubuk dan ditekan dalam bentuk

pelet bundar. Pelet ini nantinya akan ditembak dengan sinar X. Spektrum

emisi sinar X yang dihasilkan merupakan ciri-ciri tiap-tiap unsur yang terkandung

dalam sampel.

Analisis ini dapat digunakan untuk penentuan sebagian besar unsur, dan

juga sangat sensitif untuk penentuan secara tepat beberapa unsur jejak (seperti

Y, Zr, Sr, Rb dalam kisaran ppm).



Electron probe microanalysis

Metode ini didasarkan atas prinsip yang sama dengan analisis fluoresen sinar

X, kecuali energi yang dipakai bukan tabung sinar X tetap digantikan oleh

sinar elektron. Disebut mikroanalisis karena dapat menganalisis baik kualitatif

maupun kuantitatif material dalam jumlah yang sangat sedikit. Sampel

yang dianalisis biasanya berbentuk sayatan yang sudah dikilapkan (polished

section atau polished thin section) dari suatu mineral, batuan atau material

padat yang lain.

Volume minimum yang dapat dianalisis dengan metode ini sekitar 10 sampai

20 fim3, yang dalam satuan berat sekitar 10-11 gram (untuk material silikat).



Analisis spektrografik optis

Spektrograif emisi optik didasarkan pada kenyataan bahwa atom suatu unsur

dapat menghasilkan energi. Ketika energi ini terdispersi, dengan menggunakan

prisma dapat direkam sebagai suatu spektrum. Jumlah garis dan intensitas

garis dalam spektrum yang terekam ditentukan oleh konfigurasi atom.

Analisis kuantitatif dengan teknik ini memerlukan pengukuran terhadap ketajaman

dari garis-garis spektral yang terekam dalam fotograf.



3.2 Sifat-sifat fisik mineral

Penentuan nama mineral dapat dilakukan dengan membandingkan sifat-sifat

fisik mineral antara mineral yang satu dengan mineral yang lainnya. Sifat-sifat

fisik mineral tersebut meliputi: warna, kilap (luster), kekerasan (hardness), cerat

(streak), belahan (cleavage), pecahan (fracture), struktur/bentuk kristal, berat

jenis, sifat dalam (tenacity), dan kemagnetan.




Warna adalah kesan mineral jika terkena cahaya. Warna mineral dap20

at dibedakan menjadi dua, yaitu idiokromatik, bila warna mineral selalu

tetap, umumnya dijumpai pada mineral-mineral yang tidak tembus cahaya

(opak), seperti galena, magnetit, pirit; dan alokromatik, bila warna mineral

tidak tetap, tergantung dari material pengotornya. Umumnya terdapat pada

mineral-mineral yang tembus cahaya, seperti kuarsa, kalsit.

Kilap adalah kesan mineral akibat pantulan cahaya yang dikenakan

padanya. Kilap dibedakan menjadi dua, yaitu kilap logam dan kilap bukanlogam.

Kilap logam memberikan kesan seperti logam bila terkena cahaya.

Kilap ini biasanya dijumpai pada mineral-mineral yang mengandung logam

atau mineral bijih, seperti emas, galena, pirit, kalkopirit. Kilap bukan-logam

tidak memberikan kesan seperti logam jika terkena cahaya. Kilap jenis ini dapat

dibedakan menjadi:



_ Kilap kaca (vitreous luster)

memberikan kesan seperti kaca bila terkena cahaya, misalnya: kalsit,

kuarsa, halit.



_ Kilap intan (adamantine luster)

memberikan kesan cemerlang seperti intan, contohnya intan



_ Kilap sutera (silky luster)

memberikan kesan seperti sutera, umumnya terdapat pada mineral yang

mempunyai struktur serat, seperti asbes, aktinolit, gipsum



_ Kilap damar (resinous luster)

memberikan kesan seperti damar, contohnya: sfalerit dan resin



_ Kilap mutiara (pearly luster)

memberikan kesan seperti mutiara atau seperti bagian dalam dari kulit

kerang, misalnya talk, dolomit, muskovit, dan tremolit.



_ Kilap lemak (greasy luster)

menyerupai lemak atau sabun, contonya talk, serpentin



_ Kilap tanah

kenampakannya buram seperti tanah, misalnya: kaolin, limonit, bentonit.



Kekerasan adalah ketahanan mineral terhadap suatu goresan. Secara relatif

sifat fisik ini ditentukan dengan menggunakan skala Mohs, yang dimulai dari

skala 1 yang paling lunak hingga skala 10 untuk mineral yang paling keras.

Skala Mohs tersebut meliputi (1) talk, (2) gipsum, (3) kalsit, (4) fluorit, (5) apatit,

(6) feldspar, (7) kuarsa, (8) topaz, (9) korundum, dan (10) intan.



Cerat adalah warna mineral dalam bentuk bubuk. Cerat dapat sama atau

berbeda dengan warna mineral. Umumnya warna cerat tetap. Belahan

adalah kenampakan mineral berdasarkan kemampuannya membelah melalui

bidang-bidang belahan yang rata dan licin (Gambar 3.1). Bidang belahan

umumnya sejajar dengan bidang tertentu dari mineral tersebut.



Pecahan adalah kemampuan mineral untuk pecah melalui bidang yang

tidak rata dan tidak teratur. Pecahan dapat dibedakan menjadi: (a) pecahan

konkoidal, bila memperlihatkan gelombang yang melengkung di permukaan

(Gambar 3.2); (b) pecahan berserat/fibrus, bila menunjukkan kenampakan

seperti serat, contohnya asbes, augit; (c) pecahan tidak rata, bila memperlihatkan

permukaan yang tidak teratur dan kasar, misalnya pada garnet;

(d) pecahan rata, bila permukaannya rata dan cukup halus, contohnya: mineral

lempung; (e) pecahan runcing, bila permukaannya tidak teratur, kasar,

dan ujungnya runcing-runcing, contohnya mineral kelompok logam murni;

(f) tanah, bila kenampakannya seperti tanah, contohnya mineral lempung.



Bentuk mineral dapat dikatakan kristalin, bila mineral tersebut mempunyai

bidang kristal yang jelas dan disebut amorf, bila tidak mempunyai batasbatas

kristal yang jelas. Mineral-mineral di alam jarang dijumpai dalam bentuk

kristalin atau amorf yang ideal, karena kondisi pertumbuhannya yang biasanya

terganggu oleh proses-proses yang lain. Srtruktur mineral dapat dibagi

menjadi beberapa, yaitu:



_ Granular atau butiran: terdiri atas butiran-butiran mineral yang mempunyai

dimensi sama, isometrik.



_ Struktur kolom, biasanya terdiri dari prisma yang panjang dan bentuknya

ramping. Bila prisma tersebut memanjang dan halus, dikatakan

mempunyai struktur fibrus atau berserat.



_ Struktur lembaran atau lamelar, mempunyai kenampakan seperti lembaran.

Struktur ini dibedakan menjadi: tabular, konsentris, dan foliasi.



_ Struktur imitasi, bila mineral menyerupai bentuk benda lain, seperti

asikular, filiformis, membilah, dll.



Sifat dalam merupakan reaksi mineral terhadap gaya yang mengenainya,

seperti penekanan, pemotongan, pembengkokan, pematahan, pemukulan

atau penghancuran. Sifat dalam dapat dibagi menjadi: rapuh (brittle), dapat

diiris (sectile), dapat dipintal (ductile), dapat ditempa (malleable), kenyal/lentur

(elastic), dan fleksibel (flexible).



3.3 Sistematika mineral

Sistematika atau klasifikasi mineral yang biasa digunakan adalah klasifikasi

dari Dana, yang mendasarkan pada kemiripan komposisi kimia dan struktur

kristalnya. Dana membagi mineral menjadi delapan golongan (Klein & Hurlbut,

1993), yaitu:



1. Unsur murni (native element), yang dicirikan oleh hanya memiliki satu

unsur kimia, sifat dalam umumnya mudah ditempa dan/atau dapat dipintal,

seperti emas, perak, tembaga, arsenik, bismuth, belerang, intan,

dan grafit.



2. Mineral sulfida atau sulfosalt, merupakan kombinasi antara logam atau

semi-logam dengan belerang (S), misalnya galena (PbS), pirit (FeS2),

proustit (Ag3AsS3), dll



3. Oksida dan hidroksida, merupakan kombinasi antara oksigen atau

hidroksil/air dengan satu atau lebih macam logam, misalnya magnetit

(Fe3O4), goethit (FeOOH).



4. Haloid, dicirikan oleh adanya dominasi dari ion halogenida yang elektronegatif,

seperti Cl, Br, F, dan I. Contoh mineralnya: halit (NaCl), silvit

(KCl), dan fluorit (CaF2).



5. Nitrat, karbonat dan borat, merupakan kombinasi antara logam/semilogam

dengan anion komplek, CO3 atau nitrat, NO3 atau borat

(BO3). Contohnya: kalsit (CaCO3), niter (NaNO3), dan borak

(Na2B4O5(OH)4 . 8H2O).

6. Sulfat, kromat, molibdat, dan tungstat, dicirikan oleh kombinasi logam

dengan anion sulfat, kromat, molibdat, dan tungstat. Contohnya: barit

(BaSO4), wolframit ((Fe,Mn)Wo4)



7. Fosfat, arsenat, dan vanadat, contohnya apatit (CaF(PO4)3), vanadinit

(Pb5Cl(PO4)3)



8. Silikat, merupakan mineral yang jumlah meliputi 25% dari keseluruhan

mineral yang dikenal atau 40% dari mineral yang umum dijumpai.

Kelompok mineral ini mengandung ikatan antara Si dan O. Contohnya:

kuarsa (SiO2), zeolit-Na (Na6[(AlO2)6(SiO2)30] . 24H2O).
Mineralogi



Bab akan menjelaskan gambaran umum mengenai mineralogi,

kimia mineral, sifat-sifat fisik mineral, dan sistematika mineral.

Mineral adalah zat atau benda yang biasanya padat dan homogen dan hasil

bentukan alam yang memiliki sifat-sifat fisik dan kimia tertentu serta umumnya

berbentuk kristalin. Meskipun demikian ada beberapa bahan yang terjadi

karena penguraian atau perubahan sisa-sisa tumbuhan dan hewan secara

alamiah juga digolongkan ke dalam mineral, seperti batubara, minyak bumi,

tanah diatome.



3.1 Kimia mineral

Kimia mineral merupakan suatu ilmu yang dimunculkan pada awal abad ke-

19,setelah dikemukakannya "hukum komposisi tetap" oleh Proust pada tahun

1799, teori atom Dalton pada tahun 1805, dan pengembangan metode analisis

kimia kuantitatif yang akurat. Karena ilmu kimia mineral didasarkan pada

pengetahuan tentang komposisi mineral, kemungkinan dan keterbatasan

analisis kimia mineral harus diketaui dengan baik. Analisis kimia kuantitatif

bertujuan untuk mengidentifikasi unsur-unsur yang menyusun suatu 

substansi dan menentukan jumlah relatif masing-masing unsur tersebut.

Analisis harus lengkap .seluruh unsur-unsur yang ada pada mineral harus

ditentukan. dan harus tepat.



Komposisi kimia sebagian besar mineral yang diketahui, menunjukkan suatu

kisaran tertentu mengenai penyusun dasarnya. Dalam analisis kimia, jumlah

kandungan unsur dalam suatu senyawa dinyatakan dengan persen berat

dan dalam analisis yang lengkap jumlah total persentase penyusunnya harus

100. Namun dalam prakteknya, akibat keterbatasan ketepatan, jumlah 100

merupakan suatu kebetulan; umumnya kisaran 99,5 sampai 100,5 sudah dianggap

sebagai analisis yang baik.



Prinsip-prinsip kimia yang berhubungan dengan kimia mineral

1. Hukum komposisi tetap

(The Law of Constant Composition) oleh Proust (1799):

"Perbandingan massa unsur-unsur dalam tiap senyawa adalah tetap"


2. Teori atom Dalton (1805)

1. Setiap unsur tersusun oleh partikel yang sangat kecil dan berbentuk

seperti bola yang disebut atom.



a) Atom dari unsur yang sama bersifat sama sedangkan dari unsur

yang berbeda bersifat berbeda pula.


b) Atom dapat berikatan secara kimiawi menjadi molekul.



Teknik analisis mineral secara kimia

Analisis kimia mineral (dan batuan) diperoleh dari beberapa macam teknik

analisis. Sebelum tahun 1947 analisis kuantitatif mineral diperoleh dengan

teknik analisis "basah", yang mana mineral dilarutkan dalam larutan tertentu.

Penentuan unsur-unsur dalam larutan biasanya dipakai satu atau lebih teknikteknik

berikut: (1) ukur warna (colorimetry), (2) analisis volumetri (titrimetri)

dan (3) analisis gravimetri.



Sejak tahun 1960 sebagian besar analisis telah dilakukan dengan teknik instrumental

seperti spektroskop serapan atom, analisis flouresen sinar X, analisis

electron microprobe, dan spektroskop emisi optis. Masing-masing teknik

ini memiliki preparasi sampel yang khusus dan memiliki keterbatasan deteksi

dan kisaran kesalahan sedang - baik. Hasil analisis biasanya ditampilkan

dalam bentuk tabel persen berat dari unsur-unsur atau oksida dalam mineral

yang dianalisis. Teknik analisis basah memberikan determinasi secara kuantitatif

variasi kondisi oksidasi suatu kation (seperti Fe2+ dengan Fe3+) dan juga

untuk determinasi kandungan H2O dari mineral-mineral hidrous. Metode

instrumen umumnya tidak dapat memberikan informasi seperti kondisi oksidasi

atau kehadiran H2O.



Dalam analisis kimia mineral dapat dibedakan menjadi dua macam, yaitu

analisis kimia kualitatif dan analisis kimia kuantitatif. Analisis kualitatif

menyangkut deteksi dan identifikasi seluruh komposisi dari suatu senyawa.

Analisis kuantitatif meliputi penentuan persen berat (atau parts per million

[ppm]) unsur-unsur dalam suatu senyawa. Dengan demikian kedua analisis

ini akan menjawab pertanyaan "Apa yang dikandung dan berapa besar jumlahnya?".

Analisis kualitatif awal umumnya sangat membantu dalam memutuskan

metode apa yang akan dipakai untuk analisis kuantitatif.



Analisis kimia basah

Cara ini biasanya dilakukan di laboratorium kimia. Setelah sampel digerus

menjadi bubuk, langkah pertama yang dilakukan adalah menguraikan sampel.

Biasanya pada tahap ini digunakan satu dari beberapa larutan asam,

seperti asam klorida (HCl), asam sulfat (H2SO4), atau asam florida (HF), atau

campuran dari larutan asam tersebut. Jika sampel sudah dalam bentuk larutan,

langkah selanjutnya adalah colorimetry, volumetri atau gravimetri untuk

menentukan unsur-unsur yang diinginkan.

Kisaran konsentrasi unsur-unsur berdasarkan teknik analisis ini adalah:

Metode Konsentrai unsur dalam sampel

Gravimetri rendah - 100%

Volumetri rendah - 100%

Colorimetri ppm - rendah

Keuntungan menggunakan cara basah adalah reaksi dapat terjadi dengan

cepat dan relatif mudah untuk dikerjakan.



Analisis serapan atom (AAS)

AAS (atomic absorption spectroscopy) ini dapat dimasukkan dalam analisis kimia

cara basah karena sampel asli yang akan dianalisis secara sempurna terlarutkan

dalam suatu larutan sebelum dilakukan analisis. Cara ini didasarkan

atas pengamatan panjang gelombang yang dipancarkan suatu unsur atau serapan

suatu panjang gelombang oleh suatu unsur. Dalam perkembangannya

yang terakhir alat ini dilengkapi oleh inductively coupled plasma (ICP) dan

metode ICP-mass spectrometric (ICP-MS).

Sumber energi yang digunakan pada teknik ini adalah lampu katoda dengan

energi berkisar antara cahaya tampak sampai ultraviolet dari spektrum

elektromagnetik. Sampel dalam bentuk larutan dipanas-kan, dengan anggapan

atom-atom akan bebas dari ikatan kimianya. Pada sampel panas dilewatkan

sinar katoda, akan terjadi penyerapan energi yang akan terekam

dalam spektrometer.



Analisis fluoresen sinar X (XRF)

Analisis ini juga dikenal dengan spektrografi emisi sinar X, yang banyak digunakan

untuk laboratorium penelitian yang mempelajari kimia substansi anorganik.

Di samping untuk laboratorium penelitian analisis ini juga digunakan

untuk keperluan industri, seperti: industri tambang (untuk kontrol kualitas

hasil yang akan dipasarkan), industri kaca dan keramik, pabrik logam dan

bahan baku logam, dan dalam perlindungan lingkungan dan pengawasan pulusi.

Pada analisis ini sampel digerus menjadi bubuk dan ditekan dalam bentuk

pelet bundar. Pelet ini nantinya akan ditembak dengan sinar X. Spektrum

emisi sinar X yang dihasilkan merupakan ciri-ciri tiap-tiap unsur yang terkandung

dalam sampel.

Analisis ini dapat digunakan untuk penentuan sebagian besar unsur, dan

juga sangat sensitif untuk penentuan secara tepat beberapa unsur jejak (seperti

Y, Zr, Sr, Rb dalam kisaran ppm).



Electron probe microanalysis

Metode ini didasarkan atas prinsip yang sama dengan analisis fluoresen sinar

X, kecuali energi yang dipakai bukan tabung sinar X tetap digantikan oleh

sinar elektron. Disebut mikroanalisis karena dapat menganalisis baik kualitatif

maupun kuantitatif material dalam jumlah yang sangat sedikit. Sampel

yang dianalisis biasanya berbentuk sayatan yang sudah dikilapkan (polished

section atau polished thin section) dari suatu mineral, batuan atau material

padat yang lain.

Volume minimum yang dapat dianalisis dengan metode ini sekitar 10 sampai

20 fim3, yang dalam satuan berat sekitar 10-11 gram (untuk material silikat).



Analisis spektrografik optis

Spektrograif emisi optik didasarkan pada kenyataan bahwa atom suatu unsur

dapat menghasilkan energi. Ketika energi ini terdispersi, dengan menggunakan

prisma dapat direkam sebagai suatu spektrum. Jumlah garis dan intensitas

garis dalam spektrum yang terekam ditentukan oleh konfigurasi atom.

Analisis kuantitatif dengan teknik ini memerlukan pengukuran terhadap ketajaman

dari garis-garis spektral yang terekam dalam fotograf.





3.2 Sifat-sifat fisik mineral

Penentuan nama mineral dapat dilakukan dengan membandingkan sifat-sifat

fisik mineral antara mineral yang satu dengan mineral yang lainnya. Sifat-sifat

fisik mineral tersebut meliputi: warna, kilap (luster), kekerasan (hardness), cerat

(streak), belahan (cleavage), pecahan (fracture), struktur/bentuk kristal, berat

jenis, sifat dalam (tenacity), dan kemagnetan.





Warna adalah kesan mineral jika terkena cahaya. Warna mineral dap20

at dibedakan menjadi dua, yaitu idiokromatik, bila warna mineral selalu

tetap, umumnya dijumpai pada mineral-mineral yang tidak tembus cahaya

(opak), seperti galena, magnetit, pirit; dan alokromatik, bila warna mineral

tidak tetap, tergantung dari material pengotornya. Umumnya terdapat pada

mineral-mineral yang tembus cahaya, seperti kuarsa, kalsit.

Kilap adalah kesan mineral akibat pantulan cahaya yang dikenakan

padanya. Kilap dibedakan menjadi dua, yaitu kilap logam dan kilap bukanlogam.

Kilap logam memberikan kesan seperti logam bila terkena cahaya.

Kilap ini biasanya dijumpai pada mineral-mineral yang mengandung logam

atau mineral bijih, seperti emas, galena, pirit, kalkopirit. Kilap bukan-logam

tidak memberikan kesan seperti logam jika terkena cahaya. Kilap jenis ini dapat

dibedakan menjadi:



_ Kilap kaca (vitreous luster)

memberikan kesan seperti kaca bila terkena cahaya, misalnya: kalsit,

kuarsa, halit.



_ Kilap intan (adamantine luster)

memberikan kesan cemerlang seperti intan, contohnya intan



_ Kilap sutera (silky luster)

memberikan kesan seperti sutera, umumnya terdapat pada mineral yang

mempunyai struktur serat, seperti asbes, aktinolit, gipsum



_ Kilap damar (resinous luster)

memberikan kesan seperti damar, contohnya: sfalerit dan resin



_ Kilap mutiara (pearly luster)

memberikan kesan seperti mutiara atau seperti bagian dalam dari kulit

kerang, misalnya talk, dolomit, muskovit, dan tremolit.



_ Kilap lemak (greasy luster)

menyerupai lemak atau sabun, contonya talk, serpentin



_ Kilap tanah

kenampakannya buram seperti tanah, misalnya: kaolin, limonit, bentonit.





Kekerasan adalah ketahanan mineral terhadap suatu goresan. Secara relatif

sifat fisik ini ditentukan dengan menggunakan skala Mohs, yang dimulai dari

skala 1 yang paling lunak hingga skala 10 untuk mineral yang paling keras.

Skala Mohs tersebut meliputi (1) talk, (2) gipsum, (3) kalsit, (4) fluorit, (5) apatit,

(6) feldspar, (7) kuarsa, (8) topaz, (9) korundum, dan (10) intan.



Cerat adalah warna mineral dalam bentuk bubuk. Cerat dapat sama atau

berbeda dengan warna mineral. Umumnya warna cerat tetap. Belahan

adalah kenampakan mineral berdasarkan kemampuannya membelah melalui

bidang-bidang belahan yang rata dan licin (Gambar 3.1). Bidang belahan

umumnya sejajar dengan bidang tertentu dari mineral tersebut.



Pecahan adalah kemampuan mineral untuk pecah melalui bidang yang

tidak rata dan tidak teratur. Pecahan dapat dibedakan menjadi: (a) pecahan

konkoidal, bila memperlihatkan gelombang yang melengkung di permukaan

(Gambar 3.2); (b) pecahan berserat/fibrus, bila menunjukkan kenampakan

seperti serat, contohnya asbes, augit; (c) pecahan tidak rata, bila memperlihatkan

permukaan yang tidak teratur dan kasar, misalnya pada garnet;

(d) pecahan rata, bila permukaannya rata dan cukup halus, contohnya: mineral

lempung; (e) pecahan runcing, bila permukaannya tidak teratur, kasar,

dan ujungnya runcing-runcing, contohnya mineral kelompok logam murni;

(f) tanah, bila kenampakannya seperti tanah, contohnya mineral lempung.



Bentuk mineral dapat dikatakan kristalin, bila mineral tersebut mempunyai

bidang kristal yang jelas dan disebut amorf, bila tidak mempunyai batasbatas

kristal yang jelas. Mineral-mineral di alam jarang dijumpai dalam bentuk

kristalin atau amorf yang ideal, karena kondisi pertumbuhannya yang biasanya

terganggu oleh proses-proses yang lain. Srtruktur mineral dapat dibagi

menjadi beberapa, yaitu:



_ Granular atau butiran: terdiri atas butiran-butiran mineral yang mempunyai

dimensi sama, isometrik.



_ Struktur kolom, biasanya terdiri dari prisma yang panjang dan bentuknya

ramping. Bila prisma tersebut memanjang dan halus, dikatakan

mempunyai struktur fibrus atau berserat.


_ Struktur lembaran atau lamelar, mempunyai kenampakan seperti lembaran.

Struktur ini dibedakan menjadi: tabular, konsentris, dan foliasi.



_ Struktur imitasi, bila mineral menyerupai bentuk benda lain, seperti

asikular, filiformis, membilah, dll.



Sifat dalam merupakan reaksi mineral terhadap gaya yang mengenainya,

seperti penekanan, pemotongan, pembengkokan, pematahan, pemukulan

atau penghancuran. Sifat dalam dapat dibagi menjadi: rapuh (brittle), dapat

diiris (sectile), dapat dipintal (ductile), dapat ditempa (malleable), kenyal/lentur

(elastic), dan fleksibel (flexible).



3.3 Sistematika mineral

Sistematika atau klasifikasi mineral yang biasa digunakan adalah klasifikasi

dari Dana, yang mendasarkan pada kemiripan komposisi kimia dan struktur

kristalnya. Dana membagi mineral menjadi delapan golongan (Klein & Hurlbut,

1993), yaitu:



1. Unsur murni (native element), yang dicirikan oleh hanya memiliki satu

unsur kimia, sifat dalam umumnya mudah ditempa dan/atau dapat dipintal,

seperti emas, perak, tembaga, arsenik, bismuth, belerang, intan,

dan grafit.



2. Mineral sulfida atau sulfosalt, merupakan kombinasi antara logam atau

semi-logam dengan belerang (S), misalnya galena (PbS), pirit (FeS2),

proustit (Ag3AsS3), dll



3. Oksida dan hidroksida, merupakan kombinasi antara oksigen atau

hidroksil/air dengan satu atau lebih macam logam, misalnya magnetit

(Fe3O4), goethit (FeOOH).



4. Haloid, dicirikan oleh adanya dominasi dari ion halogenida yang elektronegatif,

seperti Cl, Br, F, dan I. Contoh mineralnya: halit (NaCl), silvit

(KCl), dan fluorit (CaF2).



5. Nitrat, karbonat dan borat, merupakan kombinasi antara logam/semilogam

dengan anion komplek, CO3 atau nitrat, NO3 atau borat

(BO3). Contohnya: kalsit (CaCO3), niter (NaNO3), dan borak

(Na2B4O5(OH)4 . 8H2O).

6. Sulfat, kromat, molibdat, dan tungstat, dicirikan oleh kombinasi logam

dengan anion sulfat, kromat, molibdat, dan tungstat. Contohnya: barit

(BaSO4), wolframit ((Fe,Mn)Wo4)



7. Fosfat, arsenat, dan vanadat, contohnya apatit (CaF(PO4)3), vanadinit

(Pb5Cl(PO4)3)



8. Silikat, merupakan mineral yang jumlah meliputi 25% dari keseluruhan

mineral yang dikenal atau 40% dari mineral yang umum dijumpai.

Kelompok mineral ini mengandung ikatan antara Si dan O. Contohnya:

kuarsa (SiO2), zeolit-Na (Na6[(AlO2)6(SiO2)30] . 24H2O).

BATUAN

Batuan Beku
Batuan beku atau igneous rock adalah batuan yang terbentuk dari proses pembekuan magma di bawah permukaan bumi atau hasil pembekuan lava di permukaan bumi. Menurut para ahli seperti Turner dan Verhoogen (1960), F. F Groun (1947), Takeda (1970), magma didefinisikan sebagai cairan silikat kental yang pijar terbentuk secara alamiah, bertemperatur tinggi antara 1.500–2.5000C dan bersifat mobile (dapat bergerak) serta terdapat pada kerak bumi bagian bawah. Dalam magma tersebut terdapat beberapa bahan yang larut, bersifat volatile (air, CO2, chlorine, fluorine, iron, sulphur, dan lain-lain) yang merupakan penyebab mobilitas magma, dan non-volatile (non-gas) yang merupakan pembentuk mineral yang lazim dijumpai dalam batuan beku.
Pada saat magma mengalami penurunan suhu akibat perjalanan ke permukaan bumi, maka mineral-mineral akan terbentuk. Peristiwa tersebut dikenal dengan peristiwa penghabluran. Berdasarkan penghabluran mineral-mineral silikat (magma), oleh NL. Bowen disusun suatu seri yang dikenal dengan Bowen’s Reaction Series.
Dalam mengidentifikasi batuan beku, sangat perlu sekali mengetahui karakteristik batuan beku yang meliputi sifat fisik dan komposisi mineral batuan beku. Dalam membicarakan masalah sifat fisik batuan beku tidak akan lepas dari:
1. Tekstur

Tekstur didefinisikan sebagai keadaan atau hubungan yang erat antar mineral-mineral sebagai bagian dari batuan dan antara mineral-mineral dengan massa gelas yang membentuk massa dasar dari batuan.
Tekstur pada batuan beku umumnya ditentukan oleh tiga hal yang penting, yaitu: 
o Kristalinitas
Kristalinitas adalah derajat kristalisasi dari suatu batuan beku pada waktu terbentuknya batuan tersebut. Kristalinitas dalam fungsinya digunakan untuk menunjukkan berapa banyak yang berbentuk kristal dan yang tidak berbentuk kristal, selain itu juga dapat mencerminkan kecepatan pembekuan magma. Apabila magma dalam pembekuannya berlangsung lambat maka kristalnya kasar. Sedangkan jika pembekuannya berlangsung cepat maka kristalnya akan halus, akan tetapi jika pendinginannya berlangsung dengan cepat sekali maka kristalnya berbentuk amorf.
Dalam pembentukannnya dikenal tiga kelas derajat kristalisasi, yaitu: 
 Holokristalin, yaitu batuan beku dimana semuanya tersusun oleh kristal. 
 Tekstur holokristalin adalah karakteristik batuan plutonik, yaitu mikrokristalin yang telah membeku di dekat permukaan. 
 Hipokristalin, yaitu apabila sebagian batuan terdiri dari massa gelas dan sebagian lagi terdiri dari massa kristal. 
 Holohialin, yaitu batuan beku yang semuanya tersusun dari massa gelas. Tekstur holohialin banyak terbentuk sebagai lava (obsidian), dike dan sill, atau sebagai fasies yang lebih kecil dari tubuh batuan. 
o Granularitas
Granularitas didefinisikan sebagai besar butir (ukuran) pada batuan beku. Pada umumnya dikenal dua kelompok tekstur ukuran butir, yaitu: 
 Fanerik/fanerokristalin 
 Besar kristal-kristal dari golongan ini dapat dibedakan satu sama lain secara megaskopis dengan mata biasa. Kristal-kristal jenis fanerik ini dapat dibedakan menjadi: 
 Halus (fine), apabila ukuran diameter butir kurang dari 1 mm. 
 Sedang (medium), apabila ukuran diameter butir antara 1 – 5 mm. 
 Kasar (coarse), apabila ukuran diameter butir antara 5 – 30 mm. 
 Sangat kasar (very coarse), apabila ukuran diameter butir lebih dari 30 mm. 
o Afanitik
Besar kristal-kristal dari golongan ini tidak dapat dibedakan dengan mata biasa sehingga diperlukan bantuan mikroskop. Batuan dengan tekstur afanitik dapat tersusun oleh kristal, gelas atau keduanya. Dalam analisa mikroskopis dapat dibedakan: 
 Mikrokristalin, apabila mineral-mineral pada batuan beku bisa diamati dengan bantuan mikroskop dengan ukuran butiran sekitar 0,1 – 0,01 mm. 
 Kriptokristalin, apabila mineral-mineral dalam batuan beku terlalu kecil untuk diamati meskipun dengan bantuan mikroskop. Ukuran butiran berkisar antara 0,01 – 0,002 mm. 
Amorf/glassy/hyaline, apabila batuan beku tersusun oleh gelas. 
o Bentuk Kristal
Bentuk kristal adalah sifat dari suatu kristal dalam batuan, jadi bukan sifat batuan secara keseluruhan. Ditinjau dari pandangan dua dimensi dikenal tiga bentuk kristal, yaitu: 
 Euhedral, apabila batas dari mineral adalah bentuk asli dari bidang kristal. 
 Subhedral, apabila sebagian dari batas kristalnya sudah tidak terlihat lagi. 
 Anhedral, apabila mineral sudah tidak mempunyai bidang kristal asli. 
 Ditinjau dari pandangan tiga dimensi, dikenal empat bentuk kristal, yaitu: 
 Equidimensional, apabila bentuk kristal ketiga dimensinya sama panjang. 
 Tabular, apabila bentuk kristal dua dimensi lebih panjang dari satu dimensi 
 yang lain. 
 Prismitik, apabila bentuk kristal satu dimensi lebih panjang dari dua dimensi yang lain. 
 Irregular, apabila bentuk kristal tidak teratur. 
o Hubungan Antar Kristal
Hubungan antar kristal atau disebut juga relasi didefinisikan sebagai hubungan antara kristal/mineral yang satu dengan yang lain dalam suatu batuan. Secara garis besar, relasi dapat dibagi menjadi dua, yaitu: 
 Equigranular, yaitu apabila secara relatif ukuran kristalnya yang membentuk batuan berukuran sama besar. Berdasarkan keidealan kristal-kristalnya, maka equigranular dibagi menjadi tiga, yaitu: 
 Panidiomorfik granular, yaitu apabila sebagian besar mineral-mineralnya terdiri dari mineral-mineral yang euhedral. 
 Hipidiomorfik granular, yaitu apabila sebagian besar mineral-mineralnya terdiri dari mineral-mineral yang subhedral. 
 Allotriomorfik granular, yaitu apabila sebagian besar mineral-mineralnya terdiri dari mineral-mineral yang anhedral. 
 Inequigranular, yaitu apabila ukuran butir kristalnya sebagai pembentuk batuan tidak sama besar. Mineral yang besar disebut fenokris dan yang lain disebut massa dasar atau matrik yang bisa berupa mineral atau gelas. 
2. Struktur
Struktur adalah kenampakan batuan secara makro yang meliputi kedudukan lapisan yang jelas/umum dari lapisan batuan. Struktur batuan beku sebagian besar hanya dapat dilihat dilapangan saja, misalnya: 
o Pillow lava atau lava bantal, yaitu struktur paling khas dari batuan vulkanik bawah laut, membentuk struktur seperti bantal. 
o Joint struktur, merupakan struktur yang ditandai adanya kekar-kekar yang tersusun secara teratur tegak lurus arah aliran. 
Sedangkan struktur yang dapat dilihat pada contoh-contoh batuan (hand speciment sample), yaitu:
o Masif, yaitu apabila tidak menunjukkan adanya sifat aliran, jejak gas (tidak menunjukkan adanya lubang-lubang) dan tidak menunjukkan adanya fragmen lain yang tertanam dalam tubuh batuan beku. 
o Vesikuler, yaitu struktur yang berlubang-lubang yang disebabkan oleh keluarnya gas pada waktu pembekuan magma. Lubang-lubang tersebut menunjukkan arah yang teratur. 
o Skoria, yaitu struktur yang sama dengan struktur vesikuler tetapi lubang-lubangnya besar dan menunjukkan arah yang tidak teratur. 
o Amigdaloidal, yaitu struktur dimana lubang-lubang gas telah terisi oleh mineral-mineral sekunder, biasanya mineral silikat atau karbonat. 
o Xenolitis, yaitu struktur yang memperlihatkan adanya fragmen/pecahan batuan lain yang masuk dalam batuan yang mengintrusi. 
Pada umumnya batuan beku tanpa struktur (masif), sedangkan struktur-struktur yang ada pada batuan beku dibentuk oleh kekar (joint) atau rekahan (fracture) dan pembekuan magma, misalnya: columnar joint (kekar tiang), dan sheeting joint (kekar berlembar). 
3. Komposisi Mineral
Untuk menentukan komposisi mineral pada batuan beku, cukup dengan mempergunakan indeks warna dari batuan kristal. Atas dasar warna mineral sebagai penyusun batuan beku dapat dikelompokkan menjadi dua, yaitu: 
o Mineral felsik, yaitu mineral yang berwarna terang, terutama terdiri dari mineral kwarsa, feldspar, feldspatoid dan muskovit. 
o Mineral mafik, yaitu mineral yang berwarna gelap, terutama biotit, piroksen, amphibol dan olivin. 
Batuan beku dapat diklasifikasikan berdasarkan cara terjadinya, kandungan SiO2, dan indeks warna. Dengan demikian dapat ditentukan nama batuan yang berbeda-beda meskipun dalam jenis batuan yang sama, menurut dasar klasifikasinya.
Klasifikasi berdasarkan cara terjadinya, menurut Rosenbusch (1877-1976) batuan beku dibagi menjadi:
• Effusive rock, untuk batuan beku yang terbentuk di permukaan. 
• Dike rock, untuk batuan beku yang terbentuk dekat permukaan. 
• Deep seated rock, untuk batuan beku yang jauh di dalam bumi. Oleh W.T. Huang (1962), jenis batuan ini disebut plutonik, sedang batuan effusive disebut batuan vulkanik. 
Klasifikasi berdasarkan kandungan SiO2 (C.L. Hugnes, 1962), yaitu:
• Batuan beku asam, apabila kandungan SiO2 lebih dari 66%. Contohnya adalah riolit. 
• Batuan beku intermediate, apabila kandungan SiO2 antara 52% - 66%. Contohnya adalah dasit. 
• Batuan beku basa, apabila kandungan SiO2 antara 45% - 52%. Contohnya adalah andesit. 
• Batuan beku ultra basa, apabila kandungan SiO2 kurang dari 45%. Contohnya adalah basalt. 
Klasifikasi berdasarkan indeks warna ( S.J. Shand, 1943), yaitu:
• Leucoctaris rock, apabila mengandung kurang dari 30% mineral mafik. 
• Mesococtik rock, apabila mengandung 30% - 60% mineral mafik. 
• Melanocractik rock, apabila mengandung lebih dari 60% mineral mafik. 
Sedangkan menurut S.J. Ellis (1948) juga membagi batuan beku berdasarkan indeks warnanya sebagai berikut:
• Holofelsic, untuk batuan beku dengan indeks warna kurang dari 10%. 
• Felsic, untuk batuan beku dengan indeks warna 10% sampai 40%. 
• Mafelsic, untuk batuan beku dengan indeks warna 40% sampai 70%. 
• Mafik, untuk batuan beku dengan indeks warna lebih dari 70%.

GEOLOGI

Pengertian Geologi 
Secara Etimologis Geologi berasal dari bahasa Yunani yaitu Geo yang artinya bumi dan Logos yang artinya ilmu, Jadi Geologi adalah ilmu yang mempelajari bumi. Secara umum Geologi adalah ilmu yang mempelajari planet Bumi, termasuk Komposisi, keterbentukan, dan sejarahnya. 
Karena Bumi tersusun oleh batuan, pengetahuan mengenai komposisi, pembentukan, dan sejarahnya merupakan hal utama dalam memahami sejarah bumi. Dengan kata lain batuan merupakan objek utama yang dipelajari dalam geologi. 

Ruang Lingkup Geologi 
Secara keseluruhan bumi ini terdiri dari beberapa lapisan yaitu : 
1. Atmosfer, yaitu lapisan udara yang menyelubungi Bumi 
2. Hidrosfer, yaitu lapisan air yang berada di permukaan Bumi 
3. Biosfer, yaitu Lapisan tempat makhluk hidup 
4. Lithosfer, yaitu lapisan batuan penyusun Bumi 
Ruang lingkup pembelajaran geologi yaitu lithosfer yang merupakan lapisan batuan penyusun bumi dari permukaan sampai inti bumi. Geologi juga mempelajari benda-benda luar angkasa, dan bukan tak mugkin suatu saat nanti kita dapat mengetahui keadaan geologi bulan misalnya. 

Cabang-cabang ilmu geologi 
Kajian geologi memiliki ruang lingkup yang luas, di dalamnya terdapat kajian-kajian yang kemudian berkembang menjadi ilmu yang berdiri sendiri walaupun sebenarnya ilmu-ilmu tersebut tidak dapat dipisahkan dan saling menunjang satu sama lain. ilmu-ilmu tersebut yaitu : 
1. Mineralogi, yaitu ilmu yang mempelajari mineral, berupa pendeskripsian mineral yang meliputi warna, kilap, goresan, belahan, pecahan dan sifat lainnya. 
2. Petrologi, yaitu ilmu yang mempelajari batuan, didalamnya termasuk deskripsi,klasifikasi dan originnya. 
3. Sedimentologi, yaitu ilmu yang mempelajari batuan sediment, meliputi deskripsi, klasifikasi dan proses pembentukan batuan sediment. 
4. Stratigrafi, yaitu ilmu tentang urut-urutan perlapisan batuan, pemeriannya dan proses pembentukannya. 
5. Geologi Struktur, adalah ilmu yang mempelajari arsitektur kerak bumi dan proses pembentukannya. 
6. Palentologi, yaitu ilmu yang mempelajari aspek kehidupan masa lalu yang berupa fosil. Paleontology berguna untuk penentuan umur dan geologi sejarah. 
7. Geomorfologi, yaitu ilmu yang mempelajari bentuk bentang alam dan proses0proses pembentukan bentang alam tersebut. Ilmu ini berguna dalam menentukan struktur geologi dan batuan penyusun suatu daerah. 
8. Geologi Terapan, merupakan ilmu-ilmu yang dikembangkan dari geologi yang digunakan untuk kepentingan umat manusia, diantaranya Geologi Migas, Geologi Batubara,Geohidrologi, Geologi Teknik, Geofisila, Geothermal dan sebagainya.